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Abstract

Today’s VSTOL aircraft designer is in need of an accurate theoretical model which
can swiftly evaluate various ejector configurations. Previous attempts at developing
such a model have been either over-simplified to the point of questionable accuracy,
or so computationally expensive that optimization studies were not practical.

A viscous-inviscid interaction technique is advocated as both an efficient and
accurate means of predicting the performance of two-dimensional thrust augment-
ing ejectors. The flow field is subdivided into a viscous region that contains the
turbulent jet, and an inviscid region that contains the ambient fluid drawn into the
device. The inviscid region is computed with a higher-order panel method, while an
integral method is used for the description of the viscous part. The strong viscous-
inviscid interaction present within the ejector is simulated in an iterative process
where the two regions influence each other en route to a converged solution. This
formulation retains much of the essential physics of the problem, but at the same
time requires only a small amount of computing effort.

The model is applied to a variety of parametric and optimization studies involv-
ing ejectors having either one or two primary jets. The effects of nozzle placement,
inlet and diffuser shape, free stream speed, and ejector length are investigated.
The inlet shape for single-jet ejectors is optimized for various free stream speeds
and Reynolds numbers. Optimal nozzle location and tilt are identified for various
dual-jet ejector configurations.

In all cases, it is found that the dual-jet ejector out performs its single-jet coun-
terpart. This fact is attributed to enhanced mixing due to an increase in the effective

ejector length.
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Chapter 1

Introduction

1.1 Fundamental Physics Underlying Thrust Aug-

mentation

A thrust augmenting ejector is a device capable of increasing the thrust produced by
a propulsive jet nozzle through purely fluid mechanical means. The ejector consists
of a high momentum primary jet that is exhausted into the confines of an aerody-
namic shroud (see Figure 1.1). As the jet evolves, it entrains some of the ambient
fluid contained within the ejector, thereby causing it to be swept downstream and
through the ejector exit. The fluid lost to the jet entrainment is replaced by a
secondary stream induced to flow in through the ejector inlet. As the secondary
flow is accelerated around the leading edges of the ejector shroud, it lowers the local
surface pressure in these regions. The resulting leading edge suctions create aero-
dynamic forces that have a large component in the direction of the primary nozzle
thrust. These forces, together with the increased momentum flux of the primary
nozzle due to the lowered pressure within the ejector, augment the force produced

by the primary jet.

It is clear that the ability of the jet to entrain ambient fluid provides the mech-

anism of thrust augmentation. Most investigators refer to the effect of entrainment

1
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Figure 1.1: Thrust augmenting ejector concept

as “mixing” since the primary and entrained secondary flow become indistinguish-
able at the ejector exit station. The mixing that takes place within the ejector is
due to a complex, turbulent process. While little is known about the details of the
mixing process, the consequences of mixing are well understood. Ejectors perform
optimally when the mixing process uniformly distributes the excess energy of the
primary jet such that the exiting flow is at a thermodynamic state midway between
the primary and secondary streams. Although to approach this limit of complete
mixing is the goal of all ejector designs, the current lack of theoretical understand-
ing of the mixing process has led to many configurations that are far from optimal.
Theoretical models that realistically predict the mixing process are required to aid

in the design of optimal ejectors.
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Figure 1.2: Ejector-fitted VSTOL aircraft

1.2 Application to VSTOL Aircraft Technology

The magnitude of the ejector effect is surprisingly large. Several investigators|l]
have observed more than double the thrust produced by the primary jet alone.
Because of its demonstrated potential as a thrust boosting device, the ejector has

become an attractive component for advanced aerodynamics designs.

One important application of the thrust augmenting ejectors is found in vertical
and short takeoff or landing (VSTOL) aircraft where there is a need for a large
source of powered lift. In the ejector-powered vertical takeoff aircraft concept, the
high pressure gas developed by the turbine engines is directed through a pair of
ejectors mounted along the fuselage at the wing roots (see Figure 1.2). The ejectors
boost the primary thrust to a level greater than the weight of the aircraft, thereby
allowing it to rise vertically. Once sufficient altitude has been gained, the aircraft
makes a conversion to forward flight by smoothly transferring the jet exhaust from
the ejectors to the main horizontally thrusting nozzles. When the conversion is
complete, the ejectors are covered over with movable doors to eliminate unnecessary
drag. A vertical landing is achieved by repeating the takeoff procedure in reverse

order.
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1.3 Previous Work

Ejectors have been studied in connection with thrust augmentation since the mid
1920’s. Today there exists a tremendous literature pertaining to ejector theory
and performance. Comprehensive surveys of this work can be found in the review
articles by Porter and Squyers[1] and Quinn[2]. The article by Porter and Squyers
lists more than 1600 references. As a small subset of these, a selected number of

important theoretical works are highlighted in this section.

The first theoretical study of ejectors was a control volume analysis given by von
Karman[3]. In that analysis and those that followed[4,5,6] the ejector was treated as
a black box where the conservation laws were required to hold only in a global sense
between the entrance and exit stations. These control volume analyses have been
quite useful in illustrating the importance of complete mixing as well as establishing

theoretical limits to the maximum possible thrust augmentation.

In the control volume approach, the details of the ejector mixing process are
collapsed into a single mixing efficiency parameter. This step allows simple analytic
expressions for the thrust augmentation ratio to be determined. Unfortunately, the
resulting expressions contain the mixing efficiency parameter as an unknown quan-
tity. Most investigators have accepted this fact and have simply plotted performance
curves with the mixing efficiency appearing as an undetermined parameter. In spite
of the inability to connect the mixing efficiency to a particular ejector configura-
tion, the control volume analyses are still useful in quantifying the importance of
the degree of mixing. In addition, theoretical limits on the maximum possible thrust
augmentation are established through the analyses by letting the mixing efficiency

approach unity.

Without the ability to predict the ejector mixing process, the control volume
analysis alone is not a powerful enough method to be used in conjunction with
ejector design. The analysis can be supplemented with empirical information con-
cerning the mixing efficiency, but this would require perhaps dubious extrapolations
of the experimental data to investigate designs outside of the existing data base.

A better alternative is to supplement the control volume analysis with a realistic
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theoretical model of the turbulent mixing process.

Much of the recent effort in ejector development has focused on developing
realistic theoretical models of the mixing process. The basic approach in many con-
temporary works is to incorporate a turbulence model in the approximate solution
to the Navier-Stokes equations which govern the ejector flow. If the turbulence
model is reliable, the numerical simulations are able to predict the performance of
an arbitrary ejector configuration. It is therefore possible to use these techniques

to aid in ejector design.

A few investigators have attempted to model the ejector mixing process through
a direct finite difference solution to the Navier-Stokes equations [7,8]. While the
results have been encouraging, there is a practical problem in that these solutions
require enormous amounts of computing time, even on the fastest class of computers.
A single thin-layer Navier-Stokes calculation performed by Lasinski et al. [8], for
example, took on the order of ten hours of processor time on a CDC 7600 machine.
This sort of demand for computational power makes a full Navier Stokes simulation
impractical for ejector design studies where hundreds of different configurations
must be evaluated.

An alternative solution technique, known as the viscous-inviscid matching pro-
cedure, was first applied to the ejector mixing problem by Bevilaqua [9]. By
making approximations locally and incorporating some of the known properties
of jets, Bevilaqua was able to dramatically reduce the computational effort needed
to model the ejector mixing process. Later improvements and extensions of this
idea by Bevilaqua[10,11], Tavella[12,13], and Lund[14] have increased the accuracy

and usefulness of the viscous-inviscid technique.

In the viscous-inviscid method, the flow field is divided into two separate regions.
The turbulent flow consisting of the primary jet and mixed flow make up the viscous
region, while the secondary, mainly irrotational flow makes up the inviscid region.
Independent approximations are made in each region to simplify the problem while
still resolving the important flow physics. The two regions are solved simultaneously
in an iterative process that simulates the interaction between the jet and the ambient

fluid. When the process converges, the flow variables are continuous at the juncture
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between the viscous and inviscid zones.

The efficient nature of the viscous-inviscid technique is attributed to its ability
to utilize different approximations within the viscous and inviscid regions. The
viscous-inviscid models developed to date have treated the inviscid region within a
potential flow framework, and the viscous flow under a thin shear layer assumption.
These are good local approximations that lead to a pair of relatively simple problems
for which efficient solution techniques exist. The need to iterate between the two
solutions does not become a great concern since each of the individual solution

procedures are orders of magnitude more efficient than a Navier-Stokes solution.

Bevilaqua’s original viscous-inviscid model[9] did not resolve the entire inviscid
portion of the flow. In this first model, the inviscid secondary flow was assumed
to be uniform at the ejector inlet station. Bevilaqua furthermore assumed that
the jet could be modeled with a self-similar solution. These assumptions led to
an extremely streamlined solution procedure that only required marching an initial

value problem with a single unknown.

While the validity of the uniform secondary flow assumption as well as the self-
similar jet solution could be disputed, Bevilaqua’s original viscous-inviscid model
illustrated a concept that could easily be improved to simulate the ejector flow
field more accurately. In his two later works[10,11], Bevilaqua improved his original
model by fully resolving the secondary flow with a combined panel/vortex lattice
technique. The jet model was also improved by replacing the self-similar solution
with a finite difference solution to the thin shear layer equations. These improved
models were used successfully to predict the behavior of the ejector performance as

a limited number of geometrical parameters were varied.

While Bevilaqua’s improved viscous-inviscid technique represented the ejector
flow physics quite realistically, the use of a finite difference solution in the viscous
region reduced the overall efficiency of the method. In an effort to regain some of
the lost efficiency while still maintaining an accurate solution, Tavella[12] developed
an integral method for the viscous portion of the flow field. By making some
reasonable assumptions regarding the shape of the velocity profile, Tavella was able

to formulate a method that could generate essentially the same information as the
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finite difference calculation at a small fraction of the computational time. In a later
work[13], Tavella combined his integral method with a conformal mapping solution
for the inviscid flow. The resulting algorithm was nearly as efficient as Bevilaqua’s
original work, but produced a more realistic simulation of the ejector flow field.
One criticism of Tavella’s viscous-inviscid model is that the conformal mapping
technique used for the inviscid flow imposed a practical limitation on the shape of
the ejector shroud. The method was restricted to shrouds that could be described
by small perturbations to flat plates. An additional shortcoming of Tavella’s model
(and Bevilaqua's later models) was that the thickness of the jet was ignored in the
inviscid solution. In both Tavella’s and Bevilaqua’s models, the jet was treated as a
line of sinks along the ejector centerline, whose strengths were determined from the
entrainment predicted by the viscous jet calculation. Accordingly, the flow variables

were matched at the ejector channel centerline and not the viscous-inviscid interface.

1.4 Present Work

The objective of the present work is to improve upon the existing viscous-inviscid
matching techniques in order to create an accurate and robust model that is efficient
enough to be used as an ejector design tool. The improvements entail both a
synthesis and extension of the existing methods. These may be summarized as

follows:

1. Use a higher-order panel method for the inviscid flow so that arbitrary shroud

shapes can be studied.

2. Combine the higher-order panel method with the integral method of solution

for the viscous flow.

3. Take the jet thickness into account in the inviscid solution and thereby match
the flow variables at the viscous-inviscid boundary as opposed to the ejector

channel centerline.

4. Extend the integral method for the case of an ejector with two primary jets.



8 CHAPTER 1. INTRODUCTION

5. Develop a second complete viscous-inviscid model for a dual-jet ejector.

A secondary objective of this work is to use the improved viscous-inviscid models
to learn more about the performance characteristics of ejectors. In particular the

alm is to:

1. Quantify the impact on performance when several ejector geometrical param-

eters are systematically varied.

2. Quantitatively compare the performance of a dual-jet ejector with a single-jet

ejector for a large range of configurations and operating conditions.

3. Use the models in some practical design problems to optimize the geometry

for several different operating conditions.

1.4.1 Theoretical Framework

In the present work, several simplifying assumptions are made at the outset. These
assumptions are designed to limit the scope of the problem while not being so
restrictive that the analysis is of limited value. The assumptions may be listed as

follows:

1. The mean flow is assumed to be steady.

N

. The flow is assumed to be two-dimensional.
3. The flow is assumed to be incompressible.

The first assumption limits the analysis to steady flow ejectors. Most ejector designs
are of this type, even though pulsed flow ejéctors [15,16,17] have shown to produce
more efficient mixing.

In the second assumption, the ejector flow field is idealized as being two-dimen-
sional. This assumption is a reasonable approximation since many ejector designs
have moderately large aspect ratios. Excluding the end regions, the bulk of the flow
in real ejectors should behave as if it were two-dimensional. The three-dimensional

effects that occur in the corner regions almost always lower the ejector performance.
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Hence, the two-dimensional calculations can be considered to be an upper bound
for the performance values that will be found in practice.

The third assumption limits the analysis to incompressible flow. This assump-
tion is perhaps the most restrictive, since most of the modern ejectors are designed
to operate with primary jet exit Mach numbers high enough to induce compressibil-
ity effects. The incompressible flow assumption can be viewed as a simplification
necessary to limit the scope of the analysis in the first step towards producing a
general, efficient ejector model. Once a methodology is established and tested for
incompressible flow, it should be relatively simple to extend the model to include
compressibility effects. In any event, the results of the present analysis are expected
to produce a reasonable estimate of ejector performance for moderate primary jet
Mach numbers. A more precise analysis of the applicability of the present model to

compressible flows is given in Appendix A.

1.5 Overview

The thesis is divided into eight chapters. Chapter 2 introduces a control volume
analysis that illustrates some of the basic properties of ejectors. Chapter 3 discusses
the viscous-inviscid approach as it applies to the ejector problem. In Chanter 4 the
higher-order panel method used for the inviscid solution is presented. Chapter 5
contains a derivation of the integral methods for both single and dual-jet ejectors.
The matching procedure used to drive the iteration between the viscous and inviscid
solutions is presented in Chapter 6. Chapter 7 contains the results of both the
parametric and optimization studies. Finally, a summary and some of the major

conclusions are listed in Chapter 8.
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Chapter 2
Classical Analysis

Theoretical analyses of ejectors can be grouped into two categories: (1) approximate
solutions to the equations of motion and (2) control volume analysis. In the first
of these two categories, the flow variables are determined at each point within the
ejector by employing a numerical technique to solve the appropriate equations of
motion. This type of analysis resolves the details of the mixing process and can
therefore be used to learn more about the physics of thrust augmentation. Although
the numerical simulation approach yields a wealth of information about the ejector
flow field, it is difficult to implement. The control volume approach, on the other
hand, is easy to implement and gives analytical results that provide some useful
information about the global properties of ejectors. Before the advent of computers,
control volume approaches were used almost exclusively to analyze ejectors. Today,
the results of these classical analyses are still useful in validating modern numerical
simulations. A control volume analysis is presented here to provide some insight
to the properties of ejectors and to be used later to support the results of the

viscous-inviscid numerical simulation.

2.1 Control Volume Analysis

In the control volume approach the ejector is treated at a black box where conser-

vation of mass, momentum, and energy are required to hold only between the inlet

11
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and exit stations. Global quantities such as the thrust augmentation ratio are de-
termined without regard to the details of the mixing taking place within the ejector.
The analysis is incomplete in this regard, and the degree of mixing is input as a
known parameter. In spite of the need to specify a measure of mixing efficiency, the
control volume analysis can show how the inlet velocity non-uniformity, free stream
speed, and the addition of a diffuser affect the thrust augmentation ratio.

Control volume approaches have been widely used in the past. The original pa-
per by von Karman(3] for incompressible flow ejectors without diffusers has been fol-
lowed by several extensions to compressible flow, diffusers, and forward speed[4,5,6).
In this chapter the existing results are unified into a single analysis valid for incom-
pressible flow.

Control volume analyses require the mixing process to take place either at con-
stant pressure or for constant area. The analysis which is given here is for constant
area mixing. The flow is also assumed to be incompressible and one-dimensional.

The equations of motion for incompressible flow are

Ou Ov

Oz 0y pdz pOy

where 7 is the turbulent shear stress. The continuity equation is used to rewrite

(2.2)

the momentum equation as

g (, 1 Juv 107

—_ bt —_— 2.3

az(u+pp)+3y p Oy (23)
Equations (2.1) and (2.3) are now integrated across the ejector channel of constant

half-width H. The configurations are assumed to be symmetric so that it is sufficient

to consider only the upper half-plane.

53;/0}{ udy +v(H)—-v(0)=0 (2.4)

d 1(, 1 uv_'uv_lr_r
2 [ (4 2p) v+ wtaotan) — wop@ = Lo - r0) 29
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Figure 2.1: Ejector control volume schematic

At the channel centerline, both the vertical component of velocity v and the shear
stress 7 vanish by symmetry. At the channel wall, the v component of velocity again
vanishes and the shear stress may be neglected (the skin friction may be incorpo-
rated later through an appropriate loss factor). With these ideas the conservation

integrals become °
/ udy = const (2.6)
0

H 1
/ u? + -p | dy = const (2.7)
0 p
Consider the schematic of the ejector shown in Figure 2.1. The conservation inte-

grals are applied between stations 0 and 2 to give

/ot uydy + /tH uody = /;H uqdy (2.8)

t 2dy + 2dy + —1 dy = uldy + —1 d 2.9
/ouly/tuoy/()ppoy /(; 29/0pp2y (2.9)

Define the average properties )
== d 2.10
H/o uey ( )
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= ! d
p= — 2.11
p H/o pay ( )
and the velocity skewness parameter

—}{ fOH u?dy

T udy]”

The velocity skewness parameter can be found in many of the previous control

(2.12)

volume approaches[3,6,5]. It provides a measure of the flow non-uniformity. A
uniform flow has a skewness value of 1, while increasingly non-uniform flows have
higher values of the skewness parameter. In physical terms, the skewness parameter
for incompressible flow is proportional to the ratio of the momentum flux to the
square of the mass flux. Thus a flow with a skewness factor greater than unity
contains more momentum than does a uniform flow with the same mass flux.
Using the above definitions, Eqs. (2.8) and (2.9) may be written in terms of the

averaged quantities

t t
t t t\1 1

As an approximation, the primary nozzle is modeled as a point source of momentum.
That is, the dimension of the nozzle is allowed to become arbitrarily small while
the momentum flux is held fixed. The exit velocity is required to be unbounded in
this instance in such a way that the nozzle is a singular point of finite momentum
flux but with no associated mass flux.

The point source approximation is introduced by letting & — 0 while @; — oo

such that A% — To/pH. Then the above equations become

tg = Ug (2.15)

To o, 1. .« , 1
p—H + dotig + ;Po = A3 + FPZ (2‘16)

Bernoulli’s equation is averaged across the channel to give

p=pr—1/2p(Au® — ul,) (2.17)
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Assume that only a negligible amount of mixing takes place in the diffuser. Under
this assumption, the flow between stations 2 and 3 is isentropic. The Bernoulli

equation can therefore be applied between these two stations to give

P2 — Pz = —1/2p(\ou2 — Azul) (2.18)

The exit pressure must be equal to the atmospheric value. Thus p3 = p,sm. Conser-
vation of mass requires 43 = (H/W)u,. The skewness factors A; and A3 are equal

since the process is isentropic. Making use of these results, the above equation

becomes
H 2
Z_)Z — Patm = “'1/2p)\2'l7.§ [1 - ('ﬁ/‘;) ] (219)
Bernoulli’s equation may also be applied to the inviscid portion of the inlet flow to
give
Po — Patm = —1/2p(Xotug — ul,) (2.20)
Equations (2.15), (2.16), (2.19), and (2.20) are now combined to yield
7 2 2 2
(ﬂ) = T (2.21)
“ i () - 3]
where a measure of the free stream speed, «, is defined as
2
2 puooH
T="7 (2.22)

The thrust augmentation ratio is defined as

6= IV ug(us — ue)dy

= 2.23
s — )y (223
As before, let £ — 0. Then the above equation may be written as
(/\31_12 — ‘U,oo’l_l:;) w
¢ = —2g—H (2.24)
pH

Again assume Az = X;. Then using the mass conservation relation, 43 = (H/W)i,,

as well as the definition of the free speed parameter given in Eq. (2.22), the above

ot (@) - (2)

relation becomes
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Equation (2.21) is used to give the final result

¢:[ 2477 _ﬁ_,y 2492 ] (2.26)

L () -2 i (B) -2

The velocity skewness parameters Ao and A, can not be determined by the control

volume analysis. The skewness parameter Ao represents the non-uniformity of the
secondary flow. In many cases the secondary flow is nearly uniform and Ag ~ 1. The
skewness parameter A, represents the degree of mixing of the primary and secondary
streams within the constant area portion of the ejector channel. A value of A\, =1
represents complete mixing where the flow exiting from the ejector is uniform and
is at a thermodynamic state midway between the primary and secondary streams.
Values of \; are typically larger than 1.2. It is observed experimentally that A,
varies inversely with the ejector length. This is due to the fact that a longer ejector
gives the flow more time to mix. The use of multiple primary jets or hypermixing
nozzles should therefore also reduce A,.

Without prior knowledge of the velocity skewness factors, the control volume
analysis can not be used to predict the performance of a particular configuration.
The analysis is still useful, however, since it can be used to show how the perfor-
mance will vary with these parameéters. In addition, the effects of the free stream
speed as well as the effects of a diffuser may be investigated. It is most instructive

to isolate three special cases. These are:

1. Effects of the velocity skewness parameters; given v = 0, % =1:
2

¢ = Ty (2.27)
A2
2. Effects of a diffuser; given vy =0, Ao =1:
2%
¢ = 3 (2.28)
1+ (%) 1]
3. Effects of a free stream; given % =1, A=1:
2442 24+ 72
p= 1 4 | T (2.29)

AN Icey
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Figure 2.2: Effects of the velocity skewness parameters. v = 0, % = 1.

2.2 Results

The effects of the velocity skewness parameters are shown in Figure 2.2, where
Eq. (2.27) is plotted. As anticipated, the performance decreases with increasing
Az. The performance is seen to increase with increasing A\o. Thus the ejector
performs better if the secondary flow is other than uniform. Showing that this is
the case was the intent of von Karman’s original paper[3]. Note that for nearly
complete mixing (A, = 1), the performance is significantly improved by secondary
flow non-uniformity. As the mixing efficiency drops (A; > 1), the secondary flow

non-uniformity has a smaller impact on the performance. In summary, it is best
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Figure 2.3: Effects of a diffuser. y =0, Ao =1

to have a high degree of non-uniformity at the ejector inlet and nearly uniform
conditions at the ejector exit.

The effects of a diffuser predicted by Eq. (2.28) are shown in Figure 2.3. It is
evident that a diffuser is most beneficial if the flow entering the diffuser is close to
being completely mixed (A, near 1). The advantage of having the flow more nearly
mixed is increasingly pronounced as the diffuser area ratio becomes large. This is
an important result since it shows that ejectors that employ multiple primary jets
or hypermixing nozzles in an effort to enhance the mixing process will benefit most
from the addition of a diffuser.

Note that for each exit velocity skewness parameter, there is an optimal diffuser
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Figure 2.4: Effects of the free stream speed. % =1,A=1

.0

area ratio. At this point the pressure drag associated with the diffuser starts to
outweigh the increase in performance due to the lowered inlet pressure. The optimal

diffuser area ratio is found from Eq. (2.28) to be

w 1
(—H-.) mazr - 1 - L (2.30)
Az

In summary, the performance of an ejector with a diffuser is again best when the
exiting flow is nearly mixed.
The effects of the free stream speed predicted by Eq. (2.29) are shown in Figure

2.4. The performance decreases monotonically with increasing free stream speed as
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a result of increasing ram drag. As in the other cases, the performance is always

best when A, is close to 1.

2.3 Conclusions

The control volume analysis has produced several interesting results. The analysis
showed that the performance is always best as A, approaches unity and as )y departs
from unity. It was shown that an optimal diffuser area ratio exists for each value
of X2. The performance was also shown to decrease with the free stream speed
parameter «.

While these results are both interesting and instructive, they are limited by
the need to prescribe the degree of mixing through the parameter \,. Because
of this limitation, it is not possible to use the control volume analysis to predict
the performance of a particular configuration. Since the focus of this work is to
develop a model capable of such predictions, the control volume analysis must be
supplemented with a realistic model of the ejector mixing process. The next several
chapters describe a numerical simulation technique that is developed to provide
the information necessary to determine the degree of mixing achieved by any given

ejector configuration.




Chapter 3
Viscous-Inviscid Approach

In the viscous-inviscid approach, the field is divided into two separate regions or
“zones” that contain flows of differing character. Regions of the flow that are not
affected by viscous or turbulent stresses comprise the inviscid zone, while regions
that contain significant fluid shear, such as boundary layers, jets, and wakes make
up the viscous zone. Approximations are made independently in each zone to
simplify the problem while still resolving the important flow characteristics. The
independent approximations lead to two different sets of simplified equations, each of
which is valid only in its respective region. The two zones are solved simultaneously
in an iterative matching process which assures that the solution is continuous at
the zonal interface. The converged solution is identical to a solution produced by a
single set of equations that are valid for the whole domain, but is produced with a

fraction of the computational effort.

3.1 Previous Work

The viscous-inviscid technique has been successfully used in the past to solve a vari-
ety of complex flows. Boundary layers which develop in turbomachinery {18,19], and
wing-body junctures [20,21,22] have been treated with the viscous-inviscid method,
as have flows involving shock-boundary layer interactions[23,24,25]. A large body

of literature exists for viscous-inviscid methods applied to separated regions in both
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steady [26,27,28,29,30,31,32] and unsteady[33,34,35] flows. Confined jets and thrust
augmentor configurations have also been modeled with these methods [9,10,12,13].

Perhaps the most familiar application of the viscous-inviscid method is the usual
procedure for calculating boundary layers in aerodynamic flows. In an airfoil prob-
lem, the viscous zone is made up of a thin layer near the surface, while the inviscid
zone covers the rest of the field. Typically, a potential flow method is used for the
inviscid zone, while von Karman’s integral method is used in the viscous zone. The
inviscid solution provides the surface pressure distribution needed as a boundary
condition to solve the boundary layer equations. The effect of the viscous region on
the inviscid flow is then taken into account by increasing the thickness of the airfoil
to simulate the displacement effect of the boundary layer. The thickness correction
allows an improved inviscid solution to be generated. The new pressure distribution
can then be used to compute yet another viscous flow, and so on. In principle, the
cycle can be repeated until some desired degree of convergence is obtained. In prac-
tice, the interaction between the boundary layer on an airfoil and the surrounding
inviscid stream is weak enough that only one iteration is needed to accurately match
the two solutions. Other viscous-inviscid problems, such as a boundary layer with
a separation bubble, involve a higher degree of interaction, and several cycles are

necessary in order to match the solutions together.

The most attractive feature of the viscous-inviscid procedure is that it gives
an accurate solution at a very modest computational cost. This advantage is at-
tributed to the ability to solve a different set of equations in each of the two zones.
Approximations are made locally, so that negligible terms are pruned where they
are not needed. For example, in the viscous zone of the airfoil problem, stream-
wise diffusion is neglected and the velocity normal to the surface is assumed to
be of higher order. These assumptions reduce the Navier-Stokes equations to the
boundary layer equations. Being parabolic, the boundary layer equations are much
easier to solve than the elliptic Navier-Stokes equations. The flow outside of the
airfoil boundary layer is assumed to be inviscid and, if there are no strong shocks,
irrotational. For purely subsonic flow, these assumptions allow the Navier-Stokes

equations to be reduced to Laplaces equation, which again is much easier to solve
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than the Navier-Stokes equations. Thus, the viscous-inviscid formulation reduces
the problem of solving the Navier-Stokes over the entire domain to that of solving
two much simpler problems. The price for making this simplification is that the two
solutions must be iteratively matched together. This is not a great concern, how-
ever, since convergence is often obtained in a few cycles, and the entire matching
process is still significantly faster than solving the Navier-Stokes equations.

A further advantage of the zonal approach is that it is many times easier to
implement. In some cases, one portion of the flow field may be simple enough to
be described by an analytic solution. The other region may require a numerical
solution, but the two may still be matched together to give the desired result.
In other cases, only one portion of the flow field may need a computational grid.
This can eliminate problems associated with generating a grid to fit a complicated

geometry.

3.2 Ejector Problem

The viscous-inviscid approach is a natural choice for an ejector flow field since it
contains well-defined regions of viscous and inviscid flow. The entrained secondary
flow forms the inviscid zone, while the turbulent jet and boundary layers on the
shroud walls form the viscous zone. Figure 3.1 shows how the ejector flow field is
subdivided. The inviscid zone contains the ambient fluid that is drawn into the
device. Inviscid flow exists inside a portion of the inlet between the jet and the
channel wall. The viscous region originates at the jet nozzle and grows at a linear
rate to simulate the spreading of the jet. The viscous zone completely fills the
channel downstream of the point at which the jet first strikes the wall. The wake
formed by the mixed flow which leaves the thrust augmentor exit is also part of the
viscous zone, but it is ignored since calculations have shown [36] that it exerts a
negligible effect on the mixing taking place within the channel.

The flow within the inviscid zone is also assumed to be irrotational and thus the
solution can be generated under a potential flow framework. The flow is further

assumed to be incompressible. A higher-order panel method is used as an efficient
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Figure 3.1: Subdivision of the ejector flow field into viscous and inviscid zones
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means to produce accurate solutions for arbitrary shroud shapes. The effect of the
jet entrainment on the inviscid field is simulated by applying suction to the panels
which cover the jet boundary. The panel method is desirable since it does not
require the use of a computational grid nor any iteration. The solution is formed by
constructing and inverting a moderately sized matrix. The panel method has the
added advantage that the panel suction boundary conditions only appear on the
right hand side of the matrix equation. Thus, during the viscous-inviscid matching
process, the matrix only needs to be calculated and inverted once. With each change
in the jet entrainment distribution, the new inviscid solution is found through a

simple matrix-vector multiply.

In the viscous region composed of the turbulent jet, streamwise diffusion is
neglected, and thus the thin shear layer equations are used. These equations are
solved in an integral formulation using the method of weighted residuals. In the
integral formulation, the solution is efficiently obtained by assuming the form of
the jet velocity profile. The velocity profile is made flexible by incorporating the
secondary velocity, centerline velocity, and the jet growth rate as undetermined
functions of the streamwise coordinate. The weighted residual procedure is applied
to minimize the error introduced by the velocity profile assumption. This operation
produces a set of first order differential equations for the functions that specify the
velocity profile. The differential equations are integrated by marching downstream

from the jet nozzle.

The viscous-inviscid procedure requires an iterative process to match the two
zones together. To help understand the iteration process, the thrust augmentor is
divided into two regions as shown in figure 3.2. In region 1, the jet merges with the
co-flowing inviscid flow. This area is referred to as the interaction region since the
viscous and inviscid flows are influencing each other here. Within this region the
two solutions are matched together by iterating between the jet entrainment and
the inviscid pressure distribution. In region 2, the turbulent zone completely fills
the channel. In this region, the viscous flow is no longer influenced by the inviscid

flow and no matching is needed.

The inviscid secondary flow present in the interaction region is produced by
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Figure 3.2: Viscous-inviscid interaction region. The viscous and inviscid flows are
matched in region 1. In region 2 only the viscous equations are solved.

the jet entrainment. The secondary flow, in turn, influences the growth of the
jet by imposing a pressure gradient and by reducing the rate of shear where the
jet meets the ambient fluid. This coupling between the jet and secondary flow is
simulated during the matching process. The inviscid solution provides the pressure
gradient needed as a boundary condition to compute the viscous flow. The viscous
solution is then used to produce a new distribution of jet entrainment. The panel
suction velocities are updated and an improved inviscid solution is calculated. This

procedure is continued until changes to the panel suction velocities are negligible.




Chapter 4

Inviscid Solution

4.1 Equations of Motion

The inviscid flow is assumed to be irrotational. The kinematics of the flow are then

such that the velocity field may be described as the gradient of a scalar potential
U=ve (4.1)
If the above expression is substituted into the incompressible continuity relation
V-U=0 (4.2)
it is found that the velocity potential satisfies Laplace’s equation
Ve =0 (4.3)

An integral of the momentum equation for constant density gives the Bernoulli

equation, which relates the pressure to the velocity field
p+1/2pU? = const (4.4)

Since Laplace’s equation (and boundary conditions) are linear, solutions may be
superimposed. Making use of this fact, the velocity potential is split into two parts;
one corresponding to the free stream and another corresponding to the disturbance

created by the body. Accordingly, The velocity potential is written as
®=¢o+ ¢ (4.5)

27
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Under this formulation the velocity may be expressed as

— -

U=V,+ (4.6)

Since the potential due to the free stream is known, the problem involves finding the
disturbance potential due to the presence of the body. The disturbance potential is
not considered to be small as in thin airfoil theory. In the present work the potential

1s split into two parts for convenience, not for the purpose of linearization.

4.2 Solution Alternatives

While several methods are available for solving Laplace’s equation, three of these
should be given special consideration for the ejector problem. In particular, con-
formal mapping, finite differences, and panel methods are all means of producing
accurate solutions in reasonable amounts of computational time. The individual

merits and shortcomings of each are discussed below.

4.2.1 Conformal Mapping

The technique of conformal mapping[37] is probably the most efficient means of
solving Laplace’s equation. A conformal transformation is used to map the physi-
cal geometry into a simplified shape for which the solution of Laplace’s equation is
known. The solution to the physical problem is then found by applying the reverse
transformation to the solution in the auxiliary plane. If the physical geometry is rel-
atively simple, the transformation, and therefore the solution to Laplace’s equation,
can be determined analytically. For more complex geometries the transformation
can not be determined analytically. In this case the conformal technique fails even
if the transformation is determined numerically, since there is no direct way to
determine the reverse transformation.

Tavella [13] used conformal mapping in his ejector model where the shroud was
idealized as an infinitely thin flat plate. The geometry was then such that the

classical Borda’s mouthpiece solution [38] could be used. Tavella also was able to
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obtain solutions for shrouds that could be described in terms of small perturbations
to the flat plates.

For the purposes of this work it is necessary to consider a more general class
of shroud shapes. Since the conformal mapping technique is not applicable to an

arbitrary geometry, it can not be used as the solution procedure in the present work.

4.2.2 Finite Difference Calculations

Finite difference methods[39] can solve a general class of inviscid flow problems.
As long as a computational grid can be generated, the finite difference procedure
will work on practically any geometry. Aside from the ability to handle general
geometries, the finite difference method is unattractive in that a computational
grid must be generated and that the solution requires a time-consuming iterative
process. These features make finite difference methods computationally expensive,

and therefore less attractive than the third alternative, panel methods.

4.2.3 Panel Methods

Panel methods[40] compete directly with finite difference methods in their ability to
treat complex geometries. They are computationally cheaper than finite difference
methods, however, since they do not require a computational grid or an iterative
solution. The solution procedure involves solving a linear system of algebraic equa-

tions in a direct mode.

Of these three solution procedures, the panel method is the one preferred for
the ejector study, since it is the most efficient method for the degree of generality
required. Other methods such as the vortex lattice [41, chap. 7] or vortex sheet[42,
chapt. 5] would work equally as well, but offer no further advantage over the
panel method. The panel method is chosen since its use is well documented in the

literature.
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4.3 Derivation of the Source-Panel Method

Panel methods belong to a general class of surface singularity methods in which
a solid body is replaced by distributions of various forms of singular elementary
solutions to Laplace’s equation (i.e. sources, doublets, vorticies, etc.) In the source-
panel method used here, the body surface is broken up into a number of small
elements or “panels” over which sources are distributed. The source intensities are
determined by enforcing boundary conditions at the center of each element. For
solid surfaces, the boundary condition is that the sum of the velocities induced by
all of the panels exactly cancel the component of the free stream normal to the
surface element. For flow-through boundaries, the sum of all the induced velocities

and the free stream are required to equal a specified normal velocity.

4.3.1 Green’s Third Identity

The starting point in the derivation of the panel method is the two-dimensional

version of Green’s third identity[43, page 142]

#(z0,y0) = %/c [g—i In(r) - ¢‘6%1n(7') ds (4.7)

Green’s identity relates the value of the potential at any fixed field point (z, yo)
to an integral over the body contour. The distance from the fixed point (z¢, yo)
to the point of integration on the body surface is r, while n is the local outward
pointing normal. 3 In(r) is the Green’s function for a two-dimensional source. Its
normal derivative, &2 In(r) represents a two-dimensional doublet. The derivative
of potential normal to the surface has the interpretation of the source strength, while
the value of the potential on the surface is associated with the doublet strength.
These strengths are usually denoted by o(s) and u(s) respectively. With these

conventions, Eq. (4.7) becomes

(20, y0) = % /C [a(s)ln(r)—u(s)a%ln(r) ds (4.8)

Solutions to the boundary integral problem are not unique. That is several different

distributions of ¢ and u can be found to satisfy the given boundary conditions. In
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many cases a well conditioned problem can be formulated with the sources alone.
The most notable of these is the flow over non-lifting aerodynamic bodies. It is
easy to demonstrate that sources alone are also sufficient to produce aerodynamic
forces, provided that the body is semi-infinite. In this work the ejector shroud is
treated as a semi-infinite body and thus the solution can be obtained without the
use of doublets.

In anticipation of discretizing the body surface into a collection of small elements,
the boundary integral in Green’s third identity is broken up into the sum of integrals
taken over adjoining sections of the surface. Thus, using sources alone, Eq. (4.8)

may be written equivalently as

é(zo,yo0) = 2 /’j_m]/z o(s) Inr(s; zo, yo)ds (4.9)
or more compactly
é(zo,Y0) = Z e /A P o(3)Inr(3; zo, yo)ds (4.10)
3
where
§=s—35; (4.11)

The derivation becomes simpler if each of the integrals contained in the above sum
is transformed from its current curvilinear system to a local cartesian coordinate
system placed tangent to the curve at $ = 0 (see Figure 4.1). The origin of the
7™ local coordinate system lies at the point (Zp;,ycp;) in the global system. The
subscript ¢p is used to denote control point since, later in the analysis, boundary

conditions will be imposed at these points. The j™ transformation has the form

& = (:c—xcp’,)c.osaj-i-(y—ycpj)sinaj (412)
ni = —(—Zep,)sina; +(y — yep;)cos
When the above transformation is used, Eq. (4.10) becomes
ag/2
o) = X g [ O (EiEio 0 (413)

1=1
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Figure 4.1: Higher order panel surface element

The distance from the transformed location of the fixed point (£;,7;0) to the inte-

gration point on the body surface, (£, n(€)), is
7‘2(6; €jo’ njo) = (é‘jo - 5)2 + [77]'0 - nb(ﬁ)]z (4'14)

The velocity components are found by differentiating Eq. (4.13) while making use
of the chain rule and Eqs. (4.12) and (4.14) (the tildes are used to signify a velocity

computed in the transformed coordinate system)

N

Ve(2o,90) = ,};1 Ve, (€10> M) €08 0t — Vi, (€ M) sim ;] (4.15)
Vi(zo,y0) = g[—sz(fjo,mo)Sinaj+‘7n,-(€jo,njo)C°S o] (4.16)
where |
Volbons) = IR GRS (417)
Vo) = 5= [ oe) M e (418)
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4.3.2 Taylor Series Expansion of the Source Intensity and

Surface Shape

Up to this point no approximation has been introduced. If the distribution of source
intensity o(€) and the body shape 7;(£) are known, then the above relations can be
used to find the exact result for velocity at any point in the field. This is not possible
in general, however, because the source distribution is not known a priori. In the
panel method, both the source strength and the surface shape are expanded Taylor
series centered about the element origin. If the element length is small compared
with the distance to the field point, higher order terms in the expansion are small

and can be neglected.

4.3.3 Classical Panel Method

In the classical or “first order” panel method, only the leading terms in each of the
expansions are retained. That is, the body shape is approximated by a collection
of linear segments and the source strength is taken to be locally constant over each
of the elements. Under this approximation, the surface description contains slope
discontinuities, while the source distribution is discontinuous in strength. The dis-
continuity in source strength that occurs at the panel junctions has a repercussion
in the solution in that the velocity becomes infinite at these points. The veloc-
ity remains well behaved at the panel center, however, and the method can be
used to produce accurate results provided that the surface velocity calculations are
restricted to the panel center.

An additional problem associated with the discontinuous source strength is that
the body “leaks” mass at the panel junctions. Due to to a fortuitous symmetric
cancellation of errors, the leaks do not pose a serious difficulty when external flows
are computed.[40]. However, the situation is reversed when computing internal
flows since error reinforcement spoils the solution[44]. If the classical panel method
is applied to a duct flow problem, mass will not be conserved within the duct. In
addition, the velocity field becomes singular near bends in the channel wall or at

the duct end. Attempts to remedy this problem by decreasing the panel size are not
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met with success since the first order approximation converges slowly to the exact
solution. A prohibitively large number of panels would be needed to accurately

describe an internal flow with the classical panel method.

4.3.4 Higher Order Panel Method

The best way to avoid the leakage problem in internal flows is to retain more terms
in the expansions for the source distribution and surface shape. In the higher order
method described by Hess[45], the body is described by quadratic surface elements.
The singularity intensity is also allowed to vary quadratically. This formulation
makes both the surface shape and source distribution continuous through the first
derivative. The leakage problem is eliminated and the approximate solution con-
verges to the exact one with the third power of the ratio of the panel length to
the distance to the field point. The formulation of Hess is adopted here and the
derivation which follows is similar to the less detailed account given in the original
paper[45].

The derivation is started by introducing higher order approximations to the
source distribution and the body surface shape. To second order, these quantities

may be approximated as

o(6) = 03 + 6,6 + 56,6 + O(€) (419)
mE) = 5 +0(¢°) (4.20)
= 358 +0(&)

where «; is the local surface curvature. Note that, because the origin of the local
coordinate system is tangent to the body curve, the first two terms of the Taylor

series for the surface shape are zero. The arc length along the surface is found from

5= /0{ ,l 1+ (%?)2& (4.21)

Eq. (4.20) is substituted above, and the resulting integral expanded for small £ to
give

1263 4 0(e%) (4.22)

6
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The jacobian for the change of variables between 5 and ¢ is

ds 1
F-LF 556"+ 0(€%) (4.23)

Using Eqs. (4.14), (4.19), (4.20), and (4.23), the integrands of the expressions for
the velocity components (Eqs. (4.17) and (4.18)) can be expressed as functions of £
and then expanded for small £. The resulting integrals give the velocity components
as a power series in A{. This series will not converge, however, if the velocity is
computed at a point closer than A{/2 from the panel center. This problem is
relieved by using an alternate expansion of the integrands in which terms that
correspond to a constant source strength over a flat panel are retained as functions
of £, and all other terms expanded for small {. The resulting integrals involve the
same terms that are found in a classical panel method, plus terms proportional to
powers of A¢ that represent the contributions from the higher order effects of surface
and singularity shape. This formulation not only makes the series convergent, but
at the same time, assures that the integrals reduce to the results for a classical panel
method as the surface element becomes vanishingly small.

The modified expansion is implemented by first writing Eq. (4.14) in the fol-

lowing equivalent form

o= (& — &7 +0b] - 2nem(§) + 7}

(4.24)
= 7} —2n;om() + 0%,

The quantity r; represents the distance from the field point to a point on a "flat”
element sitting on the £ axis (see Figure 4.1). Equation (4.20) is now used to write

the above expression as

rt= r? [1 - K (M) £+ :]i-njonz (U:;f) {3] (4.25)

2
Ts ¥

Note that when ry is small, ry, n;,, and £ are all of the same order of magnitude.
Thus the grouping 7;,{/r} remains of order unity as r; drops below A{/2. The
series for the induced velocities will converge if the quantity r; is retained as a

function of £ in the integration, and only the latter terms of Eq. (4.25) expanded.
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In particular

1 1 Nio&

S =3 [1 +& ( . ) £+ 0(53)} (4.26)
f S

The above expression as well as Eqs. (4.20), (4.23), and (4.19) are substituted into

the integrals of Egs. (4.17), and (4.18). The resulting expressions are expanded in

powers of £, and terms through order £° retained to give the velocity components

induced by the j* panel

~ Ag;/2 (£, — ,
ij(éjo’njo) = 2_:;,'/ ’(Ei'—g){o'j'f' [Kj (n;(j%{) Uj'{"O"j] N

-ag/2 T3

(<o, +6) €+ 06} de (4.27)

- 1 8472 p, 7,6 1€ .
Vo, (o> o) = g/ -ﬂ{01+[ﬁj (-:’T*i'§—f gj+ 05| &+

~ag/2 T ? Mjo

2 (kios +8,) € + 0()} de (4.28)

When the above integrals are evaluated, the results may be written in vector form

as
> =(0) =(c) =(1) | =@, . 2
Vilioni) = A; o5+ |A; wjo;+ A; 6| A& + A [s20; + 63| A2 (4.29)

=(0)
Here A represents the disturbance due to constant source strength distributed

over a flat surface element. This is the only term which is resolved in a classical
panel method. The next higher order term is composed of two parts, one that
accounts for the surface curvature and another that accounts for the slope of the
source intensity. The last term above involves still higher order effects of surface and
singularity distribution curvature. The individual terms in Eq. (4.29) are written
out in full below. With the definitions

r? = (b4 AE/2) 412

4.30
B o= (- ALY+ (430
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the individual terms in Eq. (4.29) are

r2

A0 = £

AP = g [tant (S1R62) — tan™? (£2e2)]

AD = L [nAD + AL — 2A¢]

AP = & [6AD - nAd)] 4.31
A9 = AL[ EoA‘°)+nov(°)+,§9—3;‘jﬁ] (4.31)
AP = L [AD +&AP - At (1 +(Eo+n§)’—(r£é,r—§no)(A£/2)2)]

AP = Zr[eomoA® + (€2 - d)AL - goAg]

A 1

Agz) = ag [%(53 - 773);15,0) - 77050;120) + UoAf]

These formulas give the velocity induced by the j** panel in terms of its local
coordinate system. It is more useful to have the velocity in terms of the global
coordinate system. Using Eqs. (4.15) and (4.16), it is possible to write each of the

above terms in the following general form

Ay, = Agcosa;— A, sing;

4.32
A, (4.32)

Ag sina; + A, cosa;

The derivatives of the source distribution still remain to be determined. This is

done by using second order accurate finite differences as follows

d; = Djoj1+ Ejo;+ Fijojn

. (4.33)
65 = Gjoi+ Hjoj+ o4
where
D; = -3y
E; = ¢
Fi = wm (4.34)
Gj = a(a2+b)
Hi = -%
I, = b(a.2—Tb)
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and where

a = (A1 +AE)

4.35
%(Afj + Ajn) ( )

4.3.5 Boundary Conditions

In order to satisfy the boundary conditions, it is necessary to determine the net
influence of all panels acting at the control point of the i** panel. This is done
by systematically finding the influence of the j** panel at the fixed control point
i, and then summing the results over all ;. When considering the j** panel, the
point (£;,,75) in Eq. (4.29) is made to correspond to the i panel control point.
Next Eq. (4.32) is used to transform the influence of the j** panel into the global
coordinate system. Equation (4.33) is then used to replace the derivatives of the
source distribution in terms of the values at the panel center as well at the two

adjacent panel centers. Finally the results are summed to give

N
S {AD0; + [ADkj0;+ AD (Djoj_1 + Ejo; + Fjoj)| A&+
~
AD [K20; + (Gjojo + Hioj + Liojn)| A€} (4.36)
The above sum may be written equivalently as
— N -
Vi=)_ Bijo; (4.37)
=1

where

-

By = AD +AVEAe;+ AD k06 + AD(H; + k1AL +

AV Fong + AD L A2+

Aij+1Dj+1A§j+1 + A:’j+1 Gin A€} (4.38)
The quantity Eij is interpreted as the influence of the j** panel at the i** control
point. A linear system of algebraic equations for the source strengths is formed by

imposing one boundary condition per panel. The boundary condition is that the

velocity normal to the panel have a specified value, that is

(Vi + Vo) - 1 = Vi, (4.39)
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where 71 is the outward pointing normal defined as
fi; = —sina;Z + cos a;y (4.40)

For solid surfaces, V, is zero. Non-zero values of V,, correspond to flow-through
boundaries or porous surfaces. When each of the boundary conditions are enforced,
the following linear system arises

N

Y (—sina;B,,, + cosa;By, )o; =V, sina; — V, cosa; + Vi, (4.41)

j=1
The solution of this matrix equation yields the source strength values o; and the
velocity at each of the control points can be found through the use of Eq. (4.37).
Velocities at any other arbitrary point in the field may be calculated by following
the procedure used to generate Eq. (4.36), where the :** control point is replaced
by the field point.

4.3.6 Surface Curvature Calculation

One remaining detail of the higher-order panel method is a procedure for calculating
the surface curvature. If the body surface is described by an analytic function, the
curvature is known everywhere, and the procedure is straightforward. In most
instances, however, the geometry is not described by an analytic expression, but
rather by N + 1 discrete points on the body surface. In this case, the curvature
must be computed by a suitable approximate means. A good way to do this is to
use a pair of parametric spline fits' where z, and y, are treated as functions of the
approximate arc length found by summing the linear distance between points. Let

¢ be the approximate arc length, then the spline fits give

zy(¢)
¥s(¢)

Ty

Yo

(4.42)

1A pair of spline fits is needed since in general the surface can not be described by y; as a
single-valued function of z.
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Let 7, and y, denote derivatives with respect to (. Then the curvature for the j*
panel is computed from [46, page 464]
ZyYo — Yo Tb
K= et ST (4.43)
= BT

4.4 Inviscid Solution for the Single-Jet Ejector

The panel method requires that the surface of the ejector be broken up into a collec-
tion of small surface elements. Since the configurations treated here are symmetric,
it 1s sufficient to consider only the upper half plane. Figure 4.2 shows how the upper
half plane of the single-jet ejector is modeled with the panel method. The divid-
ing streamline that approaches the ejector along the plane of symmetry is treated
as a solid boundary. The following sloped linear segment represents the boundary
between the viscous jet flow and inviscid secondary flow. The angle between this
segment and the jet axis is taken to be 12° in accord with observations for the
spreading rate of free jets. The position of the panels that cover the jet boundary
remain fixed during the calculation. If the jet spreads less than the assumed 12°,
some of the inviscid flow will be contained within the viscous region. This does not
“present a problem, however, since the viscous formulation is also able to handle the
inviscid portion of the flow, provided that it is uniform. Suction boundary condi-
tions are applied to the panels that cover the jet to simulate entrainment of the
secondary flow. The magnitude of the suction applied at the jet boundary panels
is determined in the solution process. The half-circle at the upper end of the jet
boundary serves as a control station where a uniform flow boundary condition is
applied. The need for the control station arises from the fact that panel methods
become inaccurate inside the sharp concave corner that would otherwise exist where
the jet intersects the ejector channel walls. The uniform flow boundary condition
is justifiable since experiments have shown [47] that the secondary flow well within
the channel becomes nearly uniform. '
The ejector shroud is modeled as an impermeable surface. The wake formed
behind the ejector is treated as a continuation of the same streamline that defines

the shroud. Under this assumption the mixing taking place in the wake is neglected.
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Figure 4.2: Panel geometry for the single-jet ejector
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This is justifiable since computations have shown that the details of the wake have

little effect on the performance of the ejector.

4.5 Inviscid Solution for the Dual-Jet Ejector

The panel geometry used for the dual-jet ejector model is quite similar to that used
in the single-jet model. The actual distribution of panels is shown in Figure 4.3. As
in the single-jet case, the presence of symmetry allows the solution to be restricted
to the upper half plane. Unlike the single-jet ejector case, the upper half plane for
the dual-jet ejector contains one whole jet. The entrainment that occurs on both
the upper and lower side of the jet is accounted for by applying suction to the panels
that cover both sides of the jet. To account for asymmetries in the secondary flow
with respect to the jet centerline, The distribution of entrainment on either side of
the jet is not required to be the same. The distribution of entrainment velocities
for both sides of the jet are again determined in the solution process.

Owing to a non-uniform pressure profile in the secondary flow near the ejector
inlet, the jet is acted upon by a transverse pressure difference. The jet responds to
the pressure difference by curving its trajectory in such a way that the centrifugal
force acting on the fluid particles is balanced by the force created by the pressure
difference. The inviscid solution accounts for this by placing jet boundary panels
on curved surfaces that reflect the curvature of the jet centerline. The shape of
the curved jet trajectory is not known a priori, but rather must be determined
along with the rest of the solution. For this reason, the panels that cover the jet
boundary in the dual-jet case must be free to move as the solution progresses. After
each iteration, the locations of the jet boundary panels are adjusted to conform with

the latest computation of the jet trajectory.
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Figure 4.3: Panel geometry for the dual-jet ejector
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Chapter 5

Viscous Solution

5.1 Equations of Motion

Turbulent jets are similar to boundary layers in that their transverse extent is small
when compared with their streamwise length. The fluid shear is contained within
a thin layer near the jet axis, and thus the streamwise gradients are small when
compared with the transverse gradients. Under these conditions, the boundary
layer assumptions are met and it is permissible to neglect the streamwise diffusion
term in the Navier-Stokes equations. In addition, turbulent jets have the special
characteristic that they develop in the absence of solid surfaces, where molecular
viscosity is an important factor. Turbulent transport dominates molecular transport
everywhere in the jet flow field, and it is therefore possible to entirely neglect the
effects of viscosity[48, page 53].

The equations that govern the jet flow are the turbulent boundary layer equa-

tions in which the molecular viscosity has been neglected.

Ou Ov
32 + 5y = 0 (5.1)

Ou Ou 10p 10r

Y ——— = L 2
oz v6y+p6:v p Oy (5.2)
The transverse momentum equation is retained in the following approximate form{49]

that relates the lateral pressure gradient to the centrifugal force associated with

45




46 CHAPTER 5. VISCOUS SOLUTION

curved particle trajectories

op _ pu?
5.21:% (5.3)

The flow is assumed to be incompressible, and thus the equation of state is simply
p = const (5.4)

Finally, the turbulent shear stress is related to the mean velocity gradients via the

Boussinesq approximation
1 Ou
-T =Vv;—
p Oy
Here v, is the “eddy viscosity coefficient” which is determined from a simple alge-

(5.5)

braic stress model.

5.2 Solution Alternatives

The boundary layer equations are classified mathematically as being parabolic.
Parabolic equations are relatively simple to solve since the properties at any given
station are only affected by the upstream flow history. This one-sidedness allows ap-
proximate solution methods to be formulated in terms of simple marching schemes
that integrate the equations in a single streamwise pass. The merits of a few suitable

approximate schemes, as well an exact solution alternative are considered below.

5.2.1 Similarity Solutions

In a few special cases, the boundary conditions are such that the boundary layer
equations yield exact solutions. These solutions are all of the similarity type, in
which the absence of a natural length scale dictates that the solution must depend on
the ratio y/z. This regrouping of variables reduces the dimension of the problem by
one, and the boundary layer equations reduce to an integrable ordinary differential
equation.

The turbulent free jet is one such special case. A similarity solution to the
free turbulent free jet was first found by Tollmien[50] in 1926. Tollmien, who used

Prandtl’s mixing length formula, arrived at the solution in terms of a modified
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stream function that had to be found numerically. Later Gortler[51] used an eddy
viscosity model to arrive at a purely analytical result in which the solution is written
in terms of hyperbolic functions. These solutions are extremely valuable since they
give the velocity everywhere in the field in terms of a single known function.
While similarity solutions exist for the free jet, they do not, in general, exist
for confined jets. The separation between the channel walls, the external flow
velocity, and the pressure gradient all introduce length scales that spoil similarity.
Newmann[52] performed a detailed study of the conditions under which self-similar
solutions exist for jets subjected to a streamwise pressure gradient. He found that

similarity is only possible under the following restrictive conditions on the external

flow
Ug _
vl const (5.6)
and -
29 — const (5.7)
Uo

where ug is the external velocity, u, the jet excess velocity (4mqr — o), and b the
excess velocity half-width. These are strong conditions which are not expected to
be satisfied in ejector flows.

While similarity solutions do not in general exist for ejector flows, some pre-
vious investigators[9,53,54] have nonetheless incorporated the self-similar solution
to a free jet in their analysis. In these works, it was assumed that the free jet
solution would provide a reasonable estimate of the mixing process within the ejec-
tor. Experiments[47] do not support this assumption, however, and in fact show
a significant departure from self-similarity with downstream distance. The use of
free jet solutions may be acceptable in low accuracy solutions of relatively short
ejectors, but should be ruled out in work aimed at a better understanding of the

ejector mixing process.

5.2.2 Finite Difference Methods

A more general method of solving the confined jet problem is through a finite

difference calculation of the boundary layer equations. Unlike the elliptic equations
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encountered in the inviscid flow, the boundary layer equations may be solved under
a finite difference scheme that does not involve iteration[55, chapt. 7] and [56].
A grid must still be generated, but the solution is obtained in a straightforward
marching process, in which a tri-diagonal system of equations is inverted at each
streamwise location. Finite difference procedures for solving the viscous flow within
the ejector have been used in the past by several investigators [11,57,58].

Although the finite difference approach is relatively efficient, it still is not fast
enough for the purposes of this work. Fortunately, an alternative method, superior
in efficiency, exists for solving confined jet flows. This is the “momentum integral

method” or more simply “integral method”.

5.2.3 Integral Methods

An integral method is a form of approximation that does not attempt to satisfy
the boundary layer equations at every point, but rather only satisfies the equations
on an average sense over the thickness of the shear layer. This is accomplished by
first integrating the boundary layer equations across the layer, and then finding an
approximate solution to the resulting integro-differential equation. This approxi-
mate solution is found by assuming that the velocity profile has the same shape at
each streamwise location, and that it is only the relative scaling of the profile which
changes as the flow evolves. This idea allows the velocity profile to be expanded
in terms of assumed shape functions of y, but undetermined scale functions of z.
When the approximate expression is substituted into the integral form of the mo-
mentum equation, the integral in y can be performed analytically. What remains
is a coupled set of ordinary differential equations for the scale functions of z. Only
a trivial amount of computing effort is needed to march the solution of this set
equations in the streamwise direction.

The integral method was first applied to boundary layer flows by von Karman
[59] and later refined by Pohlhausen[60]. In these original works the velocity profile
was expanded in a fourth order polynomial of y/6(z), where §(z) is the boundary
layer thickness. The problem was thus reduced to solving a single ordinary differ-

ential equation for the scale function é(z). This solution procedure is extremely
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efficient and surprisingly accurate; the Karman-Pohlhausen solution predicts the
skin friction to within 3.5% of the exact solution for a flat plate boundary layer.

Integral methods have also been successfully applied to confined jet flows.
Curtet[61] developed an integral method for confined jets which was valid over the
region where a definable inviscid flow co-exists with the jet in the channel. Hill[62]
extended this analysis to the region where the flow within the channel is fully
turbulent. Bevilaqua [9] and Tavella[12] have refined the method still further, and
have applied it to ejector flows. Tavella compared his results with experiments and
found a good agreement for the velocity profile and pressure evolution. Tavella’s
solution proved not only to be accurate, but extremely efficient as well. The four
differential equations in his model could be marched through the ejector in a fraction
of a second on an IBM 30-81 processor. In light of the previously demonstrated
accuracy and economy of the integral method, it is adopted here as the preferred
solution procedure for the viscous region.

The velocity profiles which are used in this work involve several scale functions
of z. In this case, the integrated momentum equation itself does not provide enough
information to determine one differential equation for each of the scale functions.
The system is closed by using the method of weighted residuals to generate addi-

tional differential equations for the scale functions.

5.3 The Method of Weighted Residuals

The method of weighted residuals is a particular solution procedure for the inte-
gral method that allows an arbitrary number of independent differential equations
for the scale functions to be generated from the momentum equation. A special
application of the method is developed to produce a square system of equations
for the scale functions by simultaneously enforcing an exact global conservation of
mass and momentum, while enforcing an approximate global conservation of energy.
This formulation leads to a condition that requires the residual error, created when
the approximate velocity and pressure profiles are substituted into the momentum

equation, be minimized. Minimization is achieved by demanding that the error be
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orthogonal to an independent set of weighting functions.

The derivation of the method is straightforward. The first step is to integrate
the continuity equation Eq. (5.1) with respect to y to give v as a function of u

v Ju
-1 3

The lower limit in the integration is jet centerline, y;, where the v component

dy (5.8)

v =

of velocity vanishes by symmetry. Next let I' be the operation on u and p that
represents the streamwise momentum equation. Then Egs. (5.2), (5.5), and (5.8)

may be combined to give

2

I'{u, p} =U%— [ : Z—Zdy] g—:+-1/;-g—:i—m%%=o (5.9)
Approximate solutions for the velocity and pressure profile are now introduced. The
assumed profiles depend explicitly on y through the known shape functions, and
implicitly on z through the unknown scale functions. Let the scale functions be
denoted by the sequence c¢;(z), then the approximate solution forms (denoted by

hats) may be written symbolically as
u(z,y) =~ u(ci(z),y) ;j=12,.,N -1 (5.10)

p(z,y) =~ P(c(z),y) j=12,.,N
= en(z) + plcj(z),y) 7=123,.N-1

Note that the pressure has been split in two parts; one a function of z alone, and the

(5.11)

other a function of both z and y. The elliptic effects associated with the pressure
field are captured by taking p to be the solution of the approximate transverse
momentum equation (Eq. (5.3)). The function p is an order of magnitude lower
than cp, and therefore is a higher order term in the streamwise momentum equation.
In the usual procedure for the partially parabolized Navier-Stokes equations[55],
D is neglected in the streamwise momentum equation and retained only in the
transverse momentum equation. In this work p could also justifiably be neglected
in the streamwise momentum equation. This is not done, however, since if p were
neglected, Bernoulli’s equation for the inviscid flow would not be exactly recovered

at far distances from the jet centerline.
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In order to obtain a set of equations to determine the unknown scale functions,
the momentum equation is transformed from a statement of local flux balances
to one of global flux balance by integrating it across the layer. If the viscous
region extends from y = 0 to y = H, the equation for the global conservation
of momentum applied to the approximate profiles & and p provides the following

governing equation for these quantities

/0 " (@, p)dy = 0 (5.12)

Use of the above averaged form of the momentum equation to specify the approx-
imate profile leads to weaker solutions than those for the original differential form
of the momentum equation. Although exact solutions to the above integral equa-
tion can easily be found, they will not satisfy the differential form of the momentum
equation at each point. The weighted residual method provides a means of minimiz-
ing the error, however, and the weak solutions may used as a good approximation.
In fact, when a properly implemented weighted residual method is used, the approx-
imate solution will rapidly converge to the exact solution as the assumed profiles
become increasingly flexible.

When the integral formulation is used, a subtle point arises in connection with
the global conservation of mechanical energy. The equation that governs the flux of
mechanical energy in incompressible boundary layer type flow is formed by taking
the product of the streamwise velocity and the streamwise momentum equation. In
differential form, the momentum and mechanical energy equations are redundant,
since one is just a scalar multiple of the other. If the flux of momentum is in balance
at each point, then the flux of mechanical energy is also in balance at each point.
In the momentum integral formulation, redundancy between the momentum and
energy equations does not exist, since the momentum flux is not required to balance
at each point. The momentum flux is of course required to balance on the average,
but this is not a sufficient condition to insure an average balance of energy flux. In
essence, a global conservation of momentum does not imply a global conservation
of mechanical energy. An independent equation must be used to enforce an overall

balance of mechanical energy.
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The equation needed to insure a global balance of mechanical energy is the
energy integral equation. In analogy to the momentum integral equation, it is

created by integrating the differential form of the energy equation. It has the form

H
/0 aT(@,p) = 0 (5.13)

If the velocity and pressure profiles can be specified by two unknown scale functions,
then the momentum integral and energy integral equations are sufficient to solve
the problem. It should be remarked that other possibilities exist for closing a
two-equation system. The momentum integral equation along with a “moment of
momentum” equation have been used by previous investigators[12,61]. While this
alternate formulation leads to a solution, it should be criticized in that no attempt
is made to conserve energy. When a choice exists, the energy integral equation

should be preferred over other possible equations that lack physical meaning.

In situations where more than two scale functions must be determined, the mo-
mentum integral and energy integral do not provide enough information to close
the system. This presents an apparent dilemma, since all three invariants of the
flow (mass, momentum, and energy) have already been specified. No further equa-
tions which impose physical constraints on the system may be formulated. There
is danger in imposing some non-physical condition, since this may overdetermine
the system. A way out of this difficulty is to restate the energy equation in an
approximate form. This operation then leads to additional conditions that require

the error made in the approximation be minimized.

The approximate energy integral equation is derived as follows. Suppose that
the function & can be decomposed in terms of a suitable set of basis functions. Then

it is permissible to write

ai(z)wi(y) (5.14)

-
|
b

[~¢3
I

As an approximation, assume that the # which multiplies I" in the energy integral
equation can be represented by a finite number of terms in this series. The @ that

appears in the operator I itself is not expanded, but is left intact. In this case the
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energy integral equation (Eq. (5.13)) is approximated by

Za x)/ wi(y)T'(@, p)dy =0 (5.15)

=1
The sum is made to vanish by imposing the strong condition that each of its com-
ponents vanish independently. This requirement yields the following sequence of

equations °

/0 wi(y)D(&,p)dy =0  i=1,2,..,N (5.16)
Note the similarity between this equation and the momentum integral equation
(Eq. (5.12)). The two are not independent, since the function 1 that weights T’
in the momentum integral equation is either contained directly in the basis w;, or
can be generated as a linear combination of these. If the basis functions are chosen
so that w; = 1, then the momentum integral equation is actually the first term
approximation to the energy integral equation’. In this case Eq. (5.16) alone is
sufficient to insure a global conservation of momentum and an approximate global
conservation of mechanical energy. In this work the basis functions are always
chosen so that this condition is satisfied.

At this point it is worthwhile to reinterpret Eq. (5.16) as a statement of the
weighted residual method[63]. The term I'(%,p) represents the residual error left
when the approximate velocity and pressure profiles are substituted into the mo-
mentum equation. The basis w; can be thought of as a set of weighting functions.
With these interpretations, Eq. (5.16) states that each projection of the error on
the finite space spanned by the weighting functions, w; vanishes. The fact that the
error is orthogonal to all the members of w; implies that it is minimized with respect
to these functions. In the limit as infinitely many projections are taken, the error
will be driven to zero everywhere. This follows from the fact that the only function
that is orthogonal to all members of a complete set is the function zero itself.

The weighting functions are yet unspecified. The only restrictions imposed on
these are that they form a complete set and that w; = 1. In most cases the weighting

functions are chosen to make the integrations as easy as possible. In some cases

1 This fact may explain why previous investigators(12,61] obtained reasonable results without
explicitly enforcing the energy integral equation
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it is possible to choose the weighting functions such that the approximate solution
converges to the exact one in an optimal way. Weighting functions from both of
these categories are used in this work. More discussion concerning the individual
sets of weighting functions will be discussed in a later section.

Let us now return to Eq. (5.16) and see how it provides a set of equations for
the scale functions. First consider the residual. If the approximate solutions 4 and
p are substituted into Eq. (5.9), the right hand side no longer vanishes, but rather

will equal some residual error, €

e = I'{a,p}
107

= A#,p} — -
{u, b} >3
_0u  du (v du 1;3]. 10r
d ¢;

- [“&;‘ézyﬁz;y*;a—cj oy (510

Note that the residual is linear in the first derivatives of the scale functions. For

convenience the residual may be written more compactly as
107
y) = g;e(z) — —=— 5.18
e(z,y) = ¢;¢5(x) 2 By ( )
Now if the above form for the residual is substituted into Eq. (5.16), the following

system of equations for the scale functions arises
H 1 (H Or
e [ wigidy = -/ 2y =1,2,...,N 5.19
cJ/quJy ) Wiggy (5.19)

The right hand side is simplified through integration by parts. If the shear due to
the boundary layer at the wall is neglected, the above system of equations may be

written as
H 811),' T

s By pdy (5.20)

. (H
] /0 w;g;dy = —
This system of equations for the scale functions may be written more compactly in

matrix form as

Aie; = b; (5.21)

where

H
A,'j = A w,-qjdy (522)
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and

H
b= —~ / %-—dy (5.23)

Since both the shape functions, g;(ck(z),y), and the weighting functions w;(y) are
universal, the integrations can be done once and for all. The resulting matrix and
right hand side depend only on the values of the scale functions. The solution is
obtained by marching the above system of equations downstream, computing and

inverting the matrix at each step.

5.4 Quasi Self-Preserving Velocity Profiles

The approximate velocity profiles used here are formed by making minor modifica-
tions to the self-similar profiles observed for free jets. These modifications involve
a generalization of the evolution of scaling parameters such as the centerline ve-
locity and the jet half-width. In the self-similar solution, the scaling parameters
are rigidly defined functions of the streamwise distance, while in the approximate
profiles, these quantities are taken to be general functions of z. As an example, ex-

periments for a two-dimensional free jet64, page 21] give the following self-similar

velocity profile

u(z, y)—35\/;%exp[ 0693( /10)] (5.24)

where u., is the jet exit velocity, and t is the jet exit width. In this expression the
centerline velocity decays like the inverse square root of x, while the characteristic
width of the jet grows linearly with z. The approximate velocity profiles are made
more flexible than this by allowing the scaling parameters to vary with z in a general

sense. The above velocity profile is modified accordingly as follows

#(z,y) = uo(z) + ui(z) exp |:— (-I;%) :l (5.25)

where the scale factors ug, u;, and b are functions of z to be determined in the

solution process. The shape of the approximate velocity profile is the same as a self
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Figure 5.1: Universal nature of the velocity profile. The pressure is related to ug
through Bernoulli’s equation only in region 1. In region 2 ug is a fictitious quantity,
and the pressure must be computed directly from the momentum equation.

similar profile, but the evolution of its scale is not restricted to obey the rules for

mathematical similarity. For this reason the profiles are called quasi self-preserving.

An important feature of the approximate velocity profile is that it is valid from
the jet nozzle all the way to the shroud exit. The velocity profile at each cross-section
within the ejector walls is assumed to be the central portion of the velocity profile
of an effective jet which develops in an unbounded space. The effective jet is special
in the sense that it only satisfies the conservation laws in the region bounded by the
channel walls. This idea was suggested by Abramovich[48, page 634], who noticed
that experimental data could be rationalized in this way. Figure 5.1 shows the basic
idea. The earliest attempts at using the integral method to solve confined jets did
not make use of this type of formulation. Consequently, the solutions obtained were
either restricted to the inlet region of the duct[61], or unnecessarily complicated by

the inclusion of two separate expressions for the velocity profile(62].

A certain amount of confusion is evident in the literature on how to properly
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account for the pressure when using the unified velocity profile formulation. To
understand the source of difficulty, consider the two regions shown in the sketch of
Figure 5.1. In region 1 the real jet and the effective jet are actually the same. Fluid
with velocity ug, yet untouched by the primary jet, can be related to the pressure
through Bernoulli’s equation. That is p = paem — 1/2pu?. This relation is used in
region 1 to eliminate the pressure in terms of the external velocity. In region 2
the viscous flow extends all the way across the channel. The velocity profile within
this region has the shape of the middle portion of the effective jet which does not
acknowledge the presence of the walls. The quantity uo no longer has a physical
meaning, but rather is a fictitious quantity that represents the external velocity in
the effective profile. The evolution of the velocity profile in region 2 is determined by
applying the conservation laws to only that portion of the flow contained within the
channel walls. Since it is only the region within the ejector that is required to satisfy
the conservation laws, there is not a direct connection between the pressure within
the ejector and the fictitious inviscid velocity outside. Application of Bernoulli’s
equation to relate the pressure to uo in region 2 does not make sense, since it would
imply that the pressure within the ejector is governed by the fictitious jet profile
and not the properties of the flow within the ejector. In spite of this, there are
instances in the literature where Bernoulli’s equation is used in this region[54]. The
correct way to handle the pressure in region 2 is to include it as an independent

unknown quantity in the solution of the momentum equation.

5.5 Eddy Viscosity Hypothesis

The Boussinesq approximation for the turbulent stresses was introduced in Section
5.1. The eddy viscosity coefficient contained in this relation is determined from
a suitable Reynolds stress model. In this case a simple algebraic model is used.
From dimensional considerations it is evident that the eddy viscosity coefficient is

composed of the product of a length and a velocity, that is

Vy ~ utlt (526)
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where u, and [, are the characteristic eddy velocity and eddy size respectively. These
quantities are not known, but can be estimated from the properties of the mean

flow. In this work, the following scaling hypothesis is used
vy = kulb (527)

where u; is the jet excess velocity and b is the jet excess velocity half-width. Experi-
mental measurements of the Reynolds stresses[47] support this scaling. Tavella[12],
who used this same scaling, obtained close agreement with experiments. Tavella
determined the constant k¥ by assuming that the spreading rate of the confined jet
should reduce to that of a free jet in the close neighborhood of the jet origin. This
analysis results in a value of k = 0.0283. This value is adopted in the present work

as well.

5.6 Viscous Solution for the Single-Jet Ejector

For the one jet case, the velocity profile used by Tavella and Roberts [12] is adopted

i(z,y) = uo(z) + ui(z) exp(n) (5.28)
where
n= % (5.29)

The constant « is chosen to be m, so that b has the interpretation of the excess
velocity (u — ug) half-width.

In order to justify the use of this profile, Tavella[12] performed a statistical
analysis in which the assumed profile shape was compared against experimental
data for a confined turbulent jet. He found that the profile fit the data exceptionally
well near the nozzle, but degraded slightly toward the end of the channel. In the
worst case, however, the fit was still within the scatter of the data. Tavella also
tried a more flexible profile in which the exponent was developed in powers of 7.
This representation did not produce any significant improvement in accuracy, and

thus was abandoned in favor of the simpler expression.
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The flow variables are symmetric with respect to the jet centerline in the single-
jet case, since the jet is issued along the channel symmetry plane. As a result, the
jet centerline is confined to remain on the plane of symmetry, and thereby follows
a straight trajectory. The radius of curvature of the jet centerline is infinite in this

instance, and the transverse momentum equation (Eq. (5.3)) reduces to

dp
— . 0
5 (5.30)
which implies that the pressure is a function of z alone. Thus
plz,y) = p(z) (5.31)

5.6.1 Matching Region

Within the viscous-inviscid matching region, the external velocity and the pressure
are known from the inviscid solution. With %, and p known, the viscous problem
reduces to finding solutions for u; and b. The momentum integral and energy
integral equations are use to solve for these two unknowns.

The derivation is simpler if the momentum and energy integral equations are
manipulated slightly before substitution of the approximate velocity and pressure
profiles. The momentum and energy integral equations may both be written in the
following general form

H ou Ou 10p 10r
n+1 n n__ _ut——>Sdy = .

where n = 0 for the momentum integral equation and n = 1 for the energy integral

equation. After algebraic manipulation and use of the continuity equation, the

above relation may be written equivalently as

H a 1 n+1 n—l]' a 1 n+1 n—ll
./t; {a[u(n+lu tu pp)]+6y “\n+1" +nu pp -

v [nu""lg—z +n(n — l)u"’ng—g] — %u"%} dy=20 (5.33)

If the upper limit of integration is held fixed, the differentiation with respect to z

may be brought outside the integral. The integrals of the derivatives with respect
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to y are evaluated assuming that v(0) = 0, 7(0) = 0, and 7(H) = 0. Finally gs is
assumed to be zero and Eq. (5.5) is used to rewrite the turbulent stress in terms
of the mean flow quantities. The momentum and energy integral equations then

become

2 [+ 2o v+ wtaman = (5:34)

o rH 1, 1 1, 1 _ H ( 5u\?
a—x/o [u(:‘z—u +;p>]dy+(§u (H)+;P>U(H)——Vt/0 (@) dy (5.35)

Bernoulli’s equation is valid for the inviscid portion of the inlet flow. Assuming
the vertical component of velocity to be small when compared with the horizontal

component, the pressure may be related to the external velocity as follows

1 1 1
=P = —Datm — 5”% (5.36)

Now Eq. (5.28) for the velocity profile, Eq. (5.36) for the pressure profile, and
Eq. (5.27) for the eddy viscosity coefficient are substituted into the momentum and
energy integral equations (Egs. (5.34) and (5.35)). The integrations and differen-

tiations are carried out while assuming that b <« H. After some simplification, the

{ ! } (5.37)

following system of equations results
apn iz { Uy _ bii b2
a1 Q22 b by ba

an = uo+V2u

where

az = % (Uo + ?ul)
az = V2ul+ 3ugu, + \/guf

o = % (V2u}+ Sugu + 1y/Zul)
(5.38)
by = 0
bz = —2u,
by = ko9

b

by = —u, (2\/§u0 + %ul)
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5.6.2 Fully Viscous Region

Within the fully viscous region of the ejector, the external velocity and the pres-
sure are no longer able to be computed from the inviscid solution. The system of
viscous equations must be enlarged so that uo and p may also be obtained. With
the addition of two more unknowns, the momentum integral and energy integral
equations alone do not provide enough information to close the system.

One additional equation is derived from the condition that no flow pass through

the ejector wall. This condition is stated as
dH
v(z,y = H) =u(z,y = H)— (5.39)

When the above boundary condition is enforced, the system is still one equation
short of closure. Closure is obtained through use of the weighted residual method.

The first step in implementing the weighted residual method is to derive the
individual terms in the momentum equation from the approximate velocity and
pressure profiles. Equations. (5.8), (5.28), (5.31), (5.5), and (5.27) are used to give

3& U1

gL _ . . p) 7

52 2o + exp(n)uy + 2 5 n* exp(n)b (5.40)
5= —2lnio+ Yeri(nyin + 2 ( YLoert(n) — nexo(n) | | (5.41)

o 2 b 2

ou a

- —2311177 exp(n) (5.42)

dp .

L =5 (5.43)

The residual is now constructed according to Eq. (5.17)

A, p} = g;¢
[uo +uy(1 + 29%) exp(n)] uo +

[uo exp(n) + 2u; (—é‘/zn exp(n)erf(n) + %exp(—%z))] Uy +

P+ (5.44)
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vT

517 exp(n)erf(n)| b

u
2 [uon” exp(n) +

P = —2kaulnexp(n) (5.45)

The weighting functions are chosen primarily for algebraic convenience. They

are simply the power sequence
w; =y j=1,2,3 (5.46)

The choice of weighting functions allows the integrations indicated by Eqgs. (5.22)
and (5.23) to be performed analytically. When the integrals are evaluated, the

system of equations may be written as

api; Giz2 @413 Q4 Ug b

21 432 d23 d24 Uy — b; (5 47)
G31 Q32 az3 034 P b3 .

Q41 Q42 Q43 Gy4 b by

The first three equations above are formed by weighting the residual with y°, y*, and
y? respectively. The fourth equation enforces the flow tangency boundary condition
at the wall. With the definitions

_ aH
NMH = b
E, = exp(-n})
E; = exp(-2n%)

F = -\g—ierf(ny)

F, = % gerf(\/iny)

the individual terms in Eq. (5.47) are

b
a;n = —[(uo—ulEl> 77H+2U1F1J

o
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b
a2 = ;[(UO“U1E1> F1+2U1F2]
~ ]
a3 = —|MH
«a
bu1
ayy = ET[(”O_MEI) (Fl—nHEl)-l-ul (Fz—nHE2>]
1 b 2r 2 2
azyy = E E UOnH+u1 (3(1—E1)_2T’HE1)]
1/b\*
an = |z L1-t0(1—E1)+ul ((1—E2)+F1(F1—277HE1))]
1(6\*[,
e = 5(3) ]
N sl /0 N (mm 1
aogy = 5\; -b—l2UQ Kl—(l‘i"’];{)bl}‘i‘ul (flkfl-anEl)+ E(I—EZ
b\ 311 5 s
as = ; guoT]H-f-Ul (2(F1_T]HE1)_77HE1)]
/b\3-1 , \ /1 . _ . 23 = )
azy = (2) .§UQ(F1—77HE1)+UI \-2-(F2—77HE2)+1’2—(1‘*‘77}1)51“1}
5\°11 ,
az3 = = 3’77!-1]

AN 3 1
azy = (Z %l [UO (§(F1 ~nuEr) - n?;E1) + (—(1 +ni)EF + By + Atk 77HE2)>]

b
asyy = =
«
b

a42 = _[Fl]
a
gz = 0

g = —F [Fl - TIHE1]
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o
S
I
o

1(b)\* ka?u?

b = 5(;) [2 b (1‘E1)]
3 2,2

oo () )

b\’ [adH
= = (z) [FE e us)

«

5.7 Viscous Solution for the Dual-Jet Ejector

The velocity profile for the two jet case is constructed from interfering hyperbolic

functions
A 1
i(z,y) = ua(e) + 3a(e) [tanh(y +m) = tanh(n — m)| +
ui(z) [seck(n + 1) + seck?(y = m)| (5.48)
where
n= % (5.49)
and
m = a;’(‘g) (5.50)

The shape of the profile is shown in Figure 5.2. The parameter y;(z) represents
the location of the jet centerline, ug(z) the external velocity at the ejector wall,
uo(z) + a(z) the external velocity at the channel centerline, u;(z) the jet excess
velocity, and b(x) the jet excess velocity half-width. The hyperbolic secant functions
are patterned after the self-similar solution to a free jet [64, page 19]. The hyperbolic
tangent functions are used to allow for unequal secondary flow velocity on either
side of the jets. In this case the constant a = cosh'l(\/i).

In the two jet case, the lack of symmetry in the secondary flow with respect
to the jet centerline allows a pressure difference to develop across the jets. The

pressure is therefore not constant within the layer, but rather develops some profile
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Figure 5.2: Velocity profile for the dual-jet ejector

in making the transition from the external pressure on either side. An approximate

expression for this profile that satisfies Bernoulli’s equation on either side of the jet

Mz,y) = b~ gpa(uo +1/2a) [tanh(n +m) — tanh(n —m) = 1] (5.51)

where the average pressure p is defined as

1
P = Potm — 5 (b + uoa +1/20°) (5.52)

5.7.1 Matching Region

Within the viscous-inviscid matching region, the jet centerlines follow curved tra-
‘jectories as a result of the non-uniform pressure field developed by the secondary
flow. The boundary layer equations still apply in the case of a moderately curved
layer provided they are written in a curvilinear coordinate system. If s and n are

the directions of a curvilinear coordinate system that is locally tangent to the jet
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centerline, the boundary layer equations may be recast as follows

Oou Ov
5 ta, =0 (5.53)

Ou Ou 10p 107

2
Op _ o (5.55)

o R
The velocity and pressure profiles must also be recast in the curvilinear coordinate
system. In considering the jet that lies in the upper half-plane, the following trans-
formation is used to rewrite the expressions for the velocity and pressure profiles in

terms of a coordinate system that is everywhere tangent to the jet centerline

z - s (5.56)

y—y —on (5.57)

With the assumption that y + y; > b, the velocity and pressure profiles become

(s,m) = ols) + %a(s) [1 - tanh(g)] + us(s)sech?(¢) (5.58)
. 1
b= (s) + 5pals) (uo(s) + 1/2a(s)) tanh(() (5.59)
where
¢ = ﬁb’i (5.60)

Within the viscous-inviscid matching region ug, a, and p can be deduced from the
inviscid solution. The viscous problem therefore reduces to finding solutions for u;,
b, and y;. As in the single-jet case, the momentum and energy integral equations
are used to provide equations for u; and b. An equation for y, is derived from the
normal momentum equation.

Due to lack of symmetry with respect to the jet centerline in the dual-jet case,
the integrals in the momentum and energy integral equations must extend on both

sides of the jet centerline. Analogous to Eqs. (5.34) and (5.35), the momentum
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and energy integral equations for the dual-jet ejector written in the curvilinear

coordinate system are

6%/_}:/22 [“2 + %”] dn + u(H/2)v(H/2) — u(-H/2)u(-H/2) =0 (5.61)

o (Hr [ (1, 1 1 (H2 9p
5;/_H,2 [ (3 + ;P)] dn = ;/_H/z Vg dnt
1, 1 1 1
o) (a2 + 2ot 1)) o= (=B + o2 )

H ou\’
= v, /_ al? (a_n) dn (5.62)

Calculation of the Jet Trajectory

As stated in Eq. (5.3) the pressure difference acting across the jets results in a
curvature of their centerlines. Since the pressure difference across the jet is known
from the inviscid solution, Eq. (5.55) may be integrated across the jet to yield an

expression for the curvature of the jet centerline
1 Ap

where
1
Ap= §pa(2uo + a) (5.64)
2.5b
J=p uldn (5.65)
-2.5b
The curvature of the jet centerline is also related to the derivatives of y;(z)
%
K= ———— 5.66
i 0

With the definition ¢ = i, the above equation may be written as the following two
first order differential equations that govern the jet trajectory
h = ¢
32 (5.67)
¢ = r(1+¢%)
These two equations together with Eq. (5.63) are integrated along with the rest of

the equations for the viscous solution.
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System of Equations

Equations. (5.58) and (5.59) for the velocity and pressure profiles respectively are
substituted into the momentum and energy integral equations (Egs. (5.61) and
(5.62)) and the integrations and differentiations carried out assuming H/2 > b.
The results of these operations are combined with Eq. (5.67) to give

ann a2 00 Uy b1, bi2 bis 1
00 b by by b
azy az; ‘ — 21 22 23 o (5.68)
0O 0 10 Y1 by 0 O .
a
0 0 01 q by 0 O
where
a;y = uo+§u1+§a

2 1

a = lu (u + —u -}-—a)—1 1_1n2 a?
12 = W \beTzlhiTg 1 5

an =

Qa2 =

by =

ba =

1
2’U0 (UO + 2u1 + a) + uy <§U1 + 20.) + 5&2

. u2(2u+8u +a>+2uu (u +a)+1a2 — 1—1n2 ( +1)+

0

——2u1

—u+1 1 1n2a
179 2

kalu, (16 , 1,
5 (E“‘+§a>

—2uy <2u0 + u; + a) + %a2

In2 1 1
—U (U1+2Uo+a)+ (1—‘n—)a(uo+-a)+§a2

q
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by =

1a(2uo + a) [1 . q2] 3/2

2% l%u% + 2u0u1 + uya — ]zazj

The vertical component of velocity for the matching region is found from Egs. (5.53)
and (5.58)

v o= — "6_udn

o Os
= —% {gao + tanh({)u; — -;- (ln cosh(({) — C) a+ (5.69)

2 [uag tenb?(€) + (un + 3a¢ ) tanb(€) = Faln cosh(€) = ui¢] b} (5.70)

5.7.2 Fully Viscous Region

Within the fully viscous region of the ejector, the inviscid solution no longer provides
the information to determine ug, @, and y;. As in the single-jet case, the method
of weighted residuals is used to generate additional equations for these unknowns.
Unlike the single-jet case, however, the integrals that arise in the fully viscous region
of the dual-jet ejector are quite difficult to evaluate analytically. For this reason, the
integrals are evaluated numerically at each streamwise location. When an efficient
Simpson’s rule algorithm is used to perform the integrations, the time required to
compute the fully viscous portion of the flow is still quite small.

The fully viscous region begins far enough inside the ejector to assume that the
pressure has become uniform across the channel. The jet trajectories correspond-
ingly are no longer curved, but rather follow straight trajectories. It is therefore
appropriate to return to a cartesian coordinate system. The velocity profile is given

by Eq. (5.48) and the pressure profile reduces to

p(z,y) = H2) (5.71)

The weighting functions are chosen in this instance to minimize the integrated

square of the error. Using Eq. (5.18), the integrated square of the error may be
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written as

[ eay=[" [(q,.;:,.) -2 5+ (L2 ] dy (572

Now the integrated square of the error is minimized by requiring that it be stationary

with respect to the ¢;.

o [H, H . 107

— dy = 2/ i 1956 — —=— =0 .

5%, /0 edy=2/] 4 [qJCJ pay] dy (5.73)
or after integrating the stress term by parts assuming that 7(0) = 7(H) =0

H 3 ;
CJ/ 0:;dy = -/ 3?; > (5.74)

The residual is now constructed from Eqgs. (5.48) and (5.71). With the definitions

Al = n+m

A, = n-—m

T, = tanh(n+m)

T, = tanh(n—n)

S, = sech’(n+n,)

S; = sech’(n—m)

@: = Incosh(n + n)

Q: = Incosh(n—mn,)

the derivatives of the velocity and pressure profile are

ou

=~ = ﬁ0+<5'1+52)u1+ (Tl Tz)d-i-
Oz 2

171 .

: [Ea ( _AS, + Azsz) + 24, (A1T151 + A2T252)] b+
al .

—b- [ga (S] + 52) + 2U1 ( - T]S] + T252)] "
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. by . o1 ,
vo= -2 {nuo + (Tl + Tz) u + 5 (Ql - Qz) a+
171 .

E [50, ( - AlTl + Ql + A2T2 —_ Qg) + (75} ( bt A151 + T1 - A252 + Tz)] b+

he(m+m) s (s-5)]5)

ot a [l
5:— = -3 ['2'0 ( -5+ 52) + 2u, (T151 + Tzsz)]
o _ .
9z P
Let the elements of ¢; be denoted as qu,, qu,, gp, €tc., then
. b
Qug = U— =7
e
(o o) _ b \ 94
= vo——{Ty+715) —
w = (srs)i-z(ne7)7
dp = 1

[

9 = %(TI_TZ)ﬁ_%b (Ql—Q2>g—Z

i1
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As in the single-jet case, it is necessary to enforce a flow tangency boundary condi-

tion at the ejector wall. The condition is
dH
v(z,y:H)=u(m,y=H)%- (5.75)

The need to enforce this boundary condition requires that one of the equations from

the weighted residual method be removed from the system. A bit of experimentation
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has shown that the conditioning of the system is best if the equation formed with

qu, as the weighting function is replaced with the flow tangency boundary condition.

When the integrals are evaluated, the system of equations may be written as

an
az
as
aq1
as1

aey

a2
Q22
a3z
Q42
as2

ae2

a13
az3
ass
G43
as3

Qg3

a14
QA4
Q34
Q44
Q54

deq

as
aszs
ass
ags
Qss

Qgs

16
Q26
Qa3e
Q46
Q56

Qee

4

\

J

(5.76)

The first five equations are formed by weighting the residual with ¢,,, ¢, ¢z, @,

and ¢, respectively, while the last equation enforces the flow tangency boundary

condition at the ejector wall.




Chapter 6

Viscous-Inviscid Matching

Procedure

6.1 Iteration Scheme

The goal of the viscous-inviscid matching is to obtain viscous and inviscid solutions
that are compatible at their common boundary. Compatibility is achieved when
the pressure and velocity fields are continuous at the zonal interface. In order to
arrive at compatibility, the viscous and inviscid solutions are allowed to influence
each other in an iterative process where information is exchanged at the common
boundary. This process simulates the physical viscous-inviscid interaction that is
taking place within the ejector. The iterative process must be carefully designed
such that it allows each flow region to influence the other, and yet remain both
stable and computationally efficient even when the interaction is intense.

In the ejector problem there are two areas where a matching must be (%one. The
first is a matching of velocity and pressure fields along the jet boundary, while the
second is a matching of the ejector exit pressure to the atmospheric value. Matching
of the flow variables along the jet boundary involves finding the correct distribution
of jet entrainment. Matching of the exit pressure is achieved when the value of
the primary jet momentum flux is consistent with an assumed value of the ejector

inlet pressure. These two matching processes are intertwined, since the value of

73
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Figure 6.1: Viscous-Inviscid interaction scheme.

the primary jet momentum affects the evolution of the jet, while the interaction
between the jet and inviscid flow ultimately affects the ejector exit pressure. The
overall iteration scheme is constructed in a nested fashion where an inner loop
converges the flow variables at the jet boundary and an outer loop converges the

exit pressure.

In the viscous-inviscid loop, the inviscid solution provides both the external
velocity, ug, and the pressure, p, to be used as boundary conditions in the viscous
solution. Once the viscous flow is computed, the jet entrainment velocity is passed
to the inviscid region, where it is used to update the suction applied to the panels
covering the jet boundary. A new inviscid solution is then calculated, and the cycle
repeats. Figure 6.1 illustrates the concept. Convergence is monitored by comparing
the distribution of entrainment assumed in the inviscid solution with the actual

entrainment computed by the viscous solution.

In the exit pressure matching loop, an initial guess for the primary jet momentum

is made. Next the viscous-inviscid matching is performed. The viscous solution is
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then marched all the way to the ejector exit. The computed exit pressure does not
in general agree with the atmospheric value. Accordingly, an adjustment is made
to the primary jet momentum flux, and the cycle repeats. Figure 6.2 illustrates the
concept. Convergence is achieved in the outer loop when the difference between the
exit and atmospheric pressure is negligible.

The matching procedures for both the single and dual jet ejectors are essentially
the same. The dual jet case, however, is complicated by the additional interaction
which takes place between the two jets. This interaction is manifested both by the
effects of jet curvature and by the asymmetric entrainment with respect to the jet
centerline. The matching procedures for the one and two jet ejector are described

separately below.

6.2 Matching Procedure for the Single-Jet Ejector

6.2.1 Viscous-Inviscid Matching

The ejector flow field is symmetric with respect to the channel centerline. To mini-
mize effort, only the upper half of the of the flow field is solved. The viscous-inviscid
matching is therefore contained to the upper half of the boundary between the jet
and the inviscid stream. The geometry for the upper half-plane of the inviscid solu-
tion was discussed in Section 4.4. The effect of the jet entrainment on the inviscid
field is simulated by applying suction to the panels which cover the jet boundary,
while the lowered pressure within the inlet is simulated by applying suction to the
control station. The matching process determines the distribution of panel suction
that makes the viscous and inviscid regions are compatible. The procedure is to
iterate between the inviscid horizontal component of velocity and the viscous en-
trainment. To start the process, an initial guess for the jet entrainment is made,
and the panel suction velocities are set accordingly. The inlet suction applied at
the control station is a parameter in the exit pressure matching and is assigned a
fixed arbitrary value. The inviscid problem is solved, and the velocity components

as well as the pressure along the jet boundary are calculated. The quantities uo and
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Figure 6.2: Exit pressure matching.
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p are then formed and sent to the viscous region as forcing terms (see Eq. (5.37)).
The viscous problem is solved, and the jet entrainment velocity computed via Eq.
(5.41). At this point the velocity and pressure fields are compared at the viscous-
inviscid interface. The horizontal component of velocity as well as the pressure
are already continuous at the interface, since these quantities were extracted from
the inviscid solution and transferred directly to the viscous solution through the
boundary conditions. The vertical component of velocity, however, will in general
not be continuous. Let v,;, be the entrainment velocity computed by the viscous
solution, v;, be the entrainment velocity computed by the inviscid solution, and V,,
the suction velocity applied to the panel where the entrainment is being calculated.
Then the following relaxation scheme is used for each panel to produce a correction
to its suction velocity »

VIl = VI + w(Vyis = Viny) (6.1)
Once the correction is made for each of the panels, a new inviscid solution is gen-
erated and the whole process repeated.

The parameter w in Eq. (6.1) is a relaxation factor that is needed to maintain
stability. The iteration scheme is only stable if the relaxation factor is allowed
to vary with z. The viscous calculation becomes more sensitive to changes in the
external inviscid field as the distance from the jet origin is increased. For this reason
it is necessary to increase the damping with the streamwise distance. The following

linear variation in the relaxation factor is sufficient to control the stability
z—=z
w=[r-t(Z=2)] (6:2)
Tes — To

r = 1.0, =0.7 (6.3)

where

Here z, is the position of the jet nozzle and z, is the position of the control station,
where the viscous-inviscid matching is terminated. While this scheme is under
relaxed over most of the jet trajectory, it still converges quite rapidly. Typically
four cycles are needed to match the entrainment velocity to within three significant
figures. The scheme is also surprisingly robust. No stability problems have been

encountered for a wide range of test conditions.
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6.2.2 Exit Pressure Matching

Once the viscous-inviscid matching is complete, the remainder of the viscous flow
within the channel is computed by marching the system of equations given in Eq.
(5.47). The pressure computed at the exit will in general differ from the atmospheric
value. An improvement is made by adjusting the primary jet momentum flux.

For a given geometry, the exit pressure depends only on the primary jet mo-
mentum flux and the magnitude of the suction applied to the control station. The
primary jet momentum flux in turn is specified by an initial velocity, u,,, while the
control station suction is specified by the the velocity u.,. These are the only two
relevant velocity scales in the problem. The exit pressure must therefore depend on
the ratio u,/uc,. Consequently, it is sufficient to vary either one of these quantities
while holding the other fixed. It is most convenient to hold u., fixed and vary just
the initial jet velocity u,,.

A Newton-type iteration is used to converge the exit pressure. First define

I* = (Plrit = Prtm) (6.4)
n fn _ fn—l
fl=o—e (6.5)
ulo - ulo 1
Then the iteration scheme is
upt! = uf, ~wf" (6.6)
where
=1
w={ P " (6.7)
1/f™ n>1
and where

wp & 0.1 (6.8)

Notice that the Newton scheme needs data at two iteration levels. Provision is made
for this by incorporating a simple one level scheme for the first step. This iteration
scheme converges quite rapidly. Typically four cycles are necessary to converge the
exit pressure to the atmospheric value within three significant figures.

The entire iteration process is now complete. A summary of the method is

shown schematically in Figure 6.3.
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Figure 6.3: Iteration scheme for the single jet ejector. Note how the viscous-inviscid
matching loop is nested within the exit pressure matching loop.
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6.3 Matching Procedure for the Dual-Jet Ejector

The matching procedure for the dual-jet ejector is conceptually the same as the
single-jet case. The procedure is somewhat more complicated by the need to account
for the jet curvature and unequal entrainment on either side of the jet. Accordingly,
the viscous-inviscid matching procedure contains an additional loop for converging

jet trajectories. The exit pressure matching loop is unchanged.

6.3.1 Viscous-Inviscid Matching

Unlike the single-jet ejector, the jets in the dual-jet ejector are not issued along the
channel symmetry plane. With no geometric symmetry imposed at their centerlines,
the jets have the freedom do develop asymmetric characteristics. Both curvature of
the jet centerline and unequal entrainment on the two sides of the jet are additional
effects which the viscous-inviscid interaction scheme for the dual-jet ejector must
account for.

While the flow is not expected to be symmetric with respect to the individual
jet centers, the overall flow is still symmetric with respect to the channel symmetry
plane. As in the single-jet case, it is again sufficient to consider only the upper half
of the ejector channel. The upper half-plane now contains one entire jet as opposed
to the half jet encountered previously. Both the upper and lower surfaces of this jet
must be treated separately, since in the absence of symmetry, the viscous-inviscid
interaction taking place at the upper surface is different from the interaction taking
place at the lower surface. Accordingly, the iteration scheme is extended accordingly
to separately match the viscous and inviscid solutions at upper and lower interfaces.

The procedure for matching both sides of the jet is patterned after the one-
sided matching done in the single-jet case. The suction velocities for the panels
covering both sides of the jet are initially set to reflect an initial guess for the jet
entrainment. The suction velocities applied to both the lower and upper control
stations are set to the same fixed value. The inviscid problem is then solved, and
the velocity components as well as the pressure at both the upper and lower side of

the jet boundary calculated. Next the quantities up, a, and p are determined. These
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terms are then used as boundary conditions in the solution of the viscous region
(see Eq. (5.68)). Once the viscous solution is complete, the entrainment velocity
at both the upper and lower interfaces are calculated. Finally, corrections to the
panel suction velocities on both the upper and lower sides of the jet are made with
the same iteration scheme given in Eq. (6.1). The cycle is repeated until the flow

variables are continuous at both the upper and lower viscous-inviscid interfaces.

6.3.2 Exit Pressure Matching

The exit pressure matching procedure for the dual-jet ejector is exactly the same

as that used in the single-jet case.

6.3.3 Determination of the Jet Trajectory

A new procedure needs to be introduced to account for the jet curvature. As
discussed in Section 5.7.1, the jets curve in response to the pressure difference
acting across them. The actual path of the jets is not known a priori, but rather
must be determined as part of the solution. This requires an additional iteration
loop to be built around the exit pressure matching and viscous-inviscid matching
loops.

The viscous-inviscid interfaces are curved in proportion to the curvature of the
jet centerline. The inviscid solution must account for this by distributing the panels
which cover the jet boundary over an appropriately curved surface. The shape of
this surface is not known ahead of time since it is dependent on the yet unknown
distribution of pressure within the ejector inlet. The panels that form the viscous-
inviscid interfaces must be free to move during the iteration process so that the jet
trajectory remains compatible with the rest of the solution. The procedure used
here is to initially guess the jet trajectory. The panels are laid out accordingly and
both the viscous-inviscid and exit pressure matchings done. When the provisional
solution is complete, the computed jet trajectory is compared with the initial guess.
If the vertical distance between the two exceeds a specified tolerance at any point,

the newly computed trajectory is used as the initial guess for the next iteration.
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This process converges rapidly. It is a rare case where more than two cycles are
needed to converge the jet trajectory. A summary of the overall iteration strategy

for the dual-jet ejector is shown in Figure 6.4.
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Chapter 7

Results

In this chapter the predictions of the viscous-inviscid ejector algorithm are carefully

examined. In an effort to validate the computer code, the results predicted for the

5’D

single-jet ejector are compared against experimental data. The computations are
then extended to an investigation of the effect of ejector geometry on performance.
This is done for both the single-jet and dual-jet ejectors by systematically vary-
ing the primary nozzle position, ejector length, free stream speed, diffuser angle,
and diffuser slope. The results of the parametric studies for the single-jet ejector
are compared with experimental data for qualitative agreement. Finally, the com-
puter code is used as a subroutine to an optimization package to demonstrate the
suitability of the algorithm to practical design problems.

In all cases the results are presented in non-dimensional form where the thrust

augmentation ratio, defined as

_ Tofal Ejector Thrust
~ Thrust of an Identical Nozzle Issued in Isolation

¢ (7.1)

is plotted against non-dimensional forms of the individual parameters.

7.1 Comparison With Experiment

The predictions of the viscous-inviscid algorithm are compared with a series of

measurements taken by Bernal and Sarohia[47] at the Jet Propulsion Laboratories
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////////////////////////////

Figure 7.1: Experimental configuration. L/2H = 3.25, z;/2H = 1.0, d/2H = 0.5,
U = 0.0

in 1982. Figure 7.1 shows a cross-section of the two-dimensional test configuration.
The ejector shroud is composed of two thick flat plates with semi-circular leading
edges. The plates are spaced so that the length to width ratio of the mixing chamber
is 3.25. The primary nozzle is displaced one channel-width in front of the ejector.

The jet exit Mach number is 0.3 in the experiment and no free stream is present.

7.1.1 Surface Pressure

Figure 7.2 shows a comparison between the measured and computed distribution
of the ejector surface pressure. The results are presented in non-dimensional form
where the surface pressure coefficient, defined as
P~ P
= — 7.2
P To/2H (72)
is plotted against the normalized surface coordinate. The viscous-inviscid algorithm

does a good job at capturing the suction peak resulting from the acceleration of the
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secondary fluid as it flows around the shroud leading edge. The computed results

also accurately predict the pressure recovery that results from the dissipation of

momentum within the mixing region of the ejector channel. The fact that the

conversion of the primary jet momentum to pressure is accurately predicted suggests

that the simple algebraic turbulence model is doing an adequate job of simulating

the turbulent shearing stresses.

7.1.2 Velocity Profile Evolution

Shown in Figure 7.3 is a comparison of the computed and measured velocity profiles

within the ejector channel. The viscous-inviscid algorithm accurately predicts the

Jet spreading as well as the decay of the maximum velocity. The correct prediction
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THRUST AUGMENTATION RATIO
EXPERIMENT | ¢ = 1.2
COMPUTATION | ¢ = 1.26

Table 7.1: Thrust augmentation ratio comparison

of the jet growth provides additional justification for the use the algebraic turbu-
lence model. Agreement in the shape of the velocity profiles demonstrates that the
gaussian exponential velocity profile shape chosen for the viscous calculation is a

good choice for representing the physics of the single-jet ejector flow.

7.1.3 Thrust Augmentation Ratio

The computed value of the thrust augmentation ratio is compared with the
experimental value in Table 7.1. The good agreement demonstrates that the viscous-
inviscid algorithm accurately models the overall ejector mixing process. The fact
that the computed result is 5 percent higher than the experimental result could be
attributed to the lack of account for skin friction in the computation.

Now with the results of the computation validated against experimental data, a

series of parametric and optimizations are performed.

7.2 Parametric Studies

The effects of varying several geometrical parameters is investigated by perturbing
the configuration that was used for the comparison with experiment. Unfortunately
the experimental tests at JPL did not include any such geometrical parametric varia-
tions. Other experimentalists[1] have published data showing the effects of variation
in one or two geometrical parameters. Outside of these limited results, there does
not seem to exist a cohesive set of experimental data where a single configuration

is subjected to systematic variations in several different geometric parameters. For
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this reason it is difficult to make a direct comparison of the computed results with
experimental data when a large number of parameters are systematically varied. It
is possible, however, to make a qualitative comparison with the available experi-
mental data. The experimental data must be drawn from several independent tests
that involve different basic geometrical configurations. No attempt is made to tai-
lor the computational geometry to match each of these individual tests, but rather
the basic computational geometry is held fixed and comparisons are made to show
similar trends as opposed to exact agreement. Experimental data is more abundant

for single-jet configurations and thus comparisons are made for this case only.

7.2.1 Parameters Varied

Figure 7.4 shows the geometrical parameters that are varied for both the single-jet
and dual-jet ejectors. In non-dimensional form the parameters are: longitudinal
nozzle placement, z;/2H, ejector length, L/2H, free stream speed, v2 = pU2 H/ Ty,
diffuser length, Lp/L, and diffuser angle 8. The lateral nozzle placement, y;/H
and the nozzle tilt, a are additional parameters for the dual-jet ejector. Each of
these parameters is varied independently while all others are held fixed at their
nominal values, r;/2H =0, L/2H = 3.25, y =0, Lp/L = 0, and B = 0 for the
single-jet ejector, and z;/2H = 0.44, y;/H = 0.5, « = 0, L/2H = 3.25, v = 0,
Lp/L = 0, and § = 0 for the dual-jet configuration. For the single-jet case, the
basic configuration is the same as the JPL test with the exception that the nozzle
is located at the entrance plane of the ejector as opposed to one channel width in
front. The nominal dual-jet configuration is the same as the single-jet one with the

primary jet divided in two symmetrically placed jets of half the single jet intensity.

7.2.2 Ejector Length

Figure 7.5 shows the variation in the thrust augmentation ratio with ejector length
for the single-jet and dual-jet configurations. The computations show that the
ejector performance increases monotonically with the ejector length. This result

can be explained as follows. As the ejector becomes longer, the high energy jet fluid
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Figure 7.5: Effects of the ejector length. (A) Computed results for single-jet:
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single-jet configuration (taken from Ref. [1]).
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has more opportunity to mix with the ambient fluid. The enhanced mixing requires
an increase in the amount of entrained secondary flow and hence an increase in
performance.

The experimental results shown in part (B) of Figure 7.5 are for a single-jet
configuration. The experimental data shows a similar trend with the exception
that the thrust augmentation ratio does not increase monotonically with the ejector
length. The experimental data show an increase in performance up to a maximum
value at roughly L/2H =~ 7, after which the performance continually degrades. The
differences between the computed and experimental results arises from the neglect
of skin friction in the computation. In the experiment, the increment in drag due to
skin friction starts to overcome the increment in performance due to increasing the
ejector length at L/2H ~ 7. Without account for the viscous drag, the computed
results are unable to show the optimal ejector length.

A very simple analysis can be made to better understand tl
performance of the single and dual-jet ejectors. The premise of this analysis is
that the dual-jet ejector has a greater effective length than does the single jet
configuration. The basic idea is shown in Figure 7.6. By virtue of symmetry at the
ejector channel centerline, each jet in the dual-jet configuration acts as a separate
ejector. The length to width ratio of the two effective ejectors, however, is not
the same as the original L/2H. The overall ejector length L is the same, but the
effective channel width is reduced. If the nozzle is located nﬁdwé.y between the
ejector centerline and the ejector wall, then the effective channel width is H/2. In
general, the effective channel width depends on the lateral position of the primary
nozzle. For an arbitrary lateral nozzle position, the following hypothesis for the

effective channel width is used
1 -

Herr = { é%)

The effective ejector length to width ratio is then

(), )

)H

T e

(7.3)

o e
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be L ~
Figure 7.6: Effective ejector length for the dual-jet configuration

The thrust augmentation of the dual-jet ejector may then be related to the thrust

augmentation ratio of an effective single-jet ejector as follows

Y.
L }/J ¢aingle—jet 1?17}' (5%)) -I'-IL < %
Pdual—jet ('271-, ﬁ) -~ v (7.5)
¢aingle—jet T_;_‘ (%)) _P‘IL > ;7
For the symmetrical placement Y;/H = 0.5, the above relation becomes
L L
¢dual—jet (ﬁa 05) ~ ¢aingle—jet (2 (ﬁ')) (76)

Thus the performance of a dual-jet ejector with the nozzles symmetrically placed
is predicted to perform the same as a single-jet ejector of twice the length. The
validity of this estimate is demonstrated in Figure 7.7 where the results of the
single-jet computation are used to provide an estimate of the dual-jet performance.
The estimate agrees well with the actual dual-jet computation over the entire range
of ejector lengths. An estimate for the variation in performance with the lateral

position of the nozzles in the dual-jet ejector can also be made. Figure 7.8 shows a
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Figure 7.7: Comparison of the computed results for the dual-jet ejector with an
estimate based on the effective single-jet ejector concept
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plot of Eq. (7.5) where the results for the single-jet computation have been used.
The analysis shows that the optimal location for the nozzles is midway between the

ejector channel centerline and the channel wall.

7.2.3 Longitudinal Nozzle Position

Shown in Figure 7.9 is the effect of the longitudinal nozzle placement for both the
single-jet and dual-jet ejectors. The computed results for the single-jet ejector show
that the performance is maximized when the nozzle is located at the ejector inlet
plane. This fact may be explained as follows. When the nozzle is located ahead
of the ejector, much of the entrainment takes place ahead of the ejector as well.
The jet is already partially mixed as in enters the ejector shroud and as a result
has less available kinetic energy to be used to entrain additional ambient fluid.
The momentum flux of the secondary fluid entering the ejector is consequently
reduced and the performance is degraded. As the nozzle is moved away from the
entrance plane into the channel, the length over which the turbulent mixing can
take place is reduced. A reduction in mixing again implies a reduction in the
entrainment of ambient fluid and a corresponding drop in performance. According
to this argument, the optimal nozzle location should be at the ejector entrance plane
since at this location the jet has the greatest available kinetic energy as well as the
longest distance within the channel for the mixing to take place.

In part (B) of Figure 7.9, a qualitative comparison with experimental data for
a single-jet ejector is made. The experimental results show the same trend where
the performance is maximized near the ejector entrance plane. The experiment
shows a more rapid decrease in performance as the nozzle is moved in front of the
ejector. This discrepancy is probably due to differences in the basic geometry of
the experimental and computational configurations.

The computed results for the dual-jet ejector are similar to the single jet case
with the exception that the maximum performance is obtained when the jets are
located slightly inside the ejector channel. The fact that the optimal position is

not at the entrance plane for the dual-jet ejector is related to the curvature of the
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Figure 7.9: Effects of the longitudinal nozzle position. (A) Computed results for
single-jet: L/2H = 3.25, v = 0, Lp/L = 0, 8 = 0, dual-jet: L/2H = 3.25,
y;/H =05, a=0,y=0, Lp/L =0, 8 = 0. (B) Qualitative comparison with
experiment for the single-jet case (taken from Ref. [1]).
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jet centerlines. Due to the non-uniform pressure in the inviscid field at the ejector
inlet, the jets are induced to follow curved trajectories. The relative position of the
jet centers are therefore displaced from their optimal position midway between the
ejector centerline and the ejector wall. As the nozzles are moved further inside the
channel, they are located in a region of increasing uniformity in the pressure field.
Consequently the displacement of the jet centerlines diminishes and the performance
is increased. The optimal position for the nozzles is the point where the rate of
increase in performance due to a less deflected jet trajectory is equal to the rate of
decrease in performance due to a decrease in the overall length over which the flow

has to mix.

7.2.4 Lateral Nozzle Position for the Dual-Jet Ejector

icure 7.10 shows how the lateral nozzle position affects the performance for the
dual-jet ejector. The results show that the performance is maximized when the
jets are located midway between the ejector walls and the channel centerline. The
performance drops off a bit faster when the jets are moved towards the ejector
channel walls than when they are moved towards the channel centerline.

A comparison of the the computed results with the estimate provided by the
effective ejector length concept is shown in part (B) of figure 7.10. The qualitative
agreement shows that moving the nozzle from its optimal location at the midpoint
between the channel centerline and the channel wall results in a shortening of the

effective ejector length.

7.2.5 Nozzle Tilt for the Dual-Jet Ejector

Shown in Figure 7.11 is the variation in performance of the dual-jet ejector with
the primary nozzle tilt. The computation shows that, for the chosen position of the
primary nozzle, the performance is maximized for a nozzle tilt of zero degrees. The
nozzle tilt affects the performance in much the same way as does the nozzle lateral
nozzle position since tilting the nozzle forces the jet centers to leave their optimal

point midway between the ejector channel centerline and the ejector wall.
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Figure 7.10: Effects of the lateral nozzle position for the dual-jet ejector. (A)
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Figure 7.11: Effects of the nozzle tilt for the dual-jet ejector. z;/2H = 0.44,
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7.2.6 Free Stream Speed

Figure 7.12 shows the computed variation in the thrust augmentation ratio with
the free stream speed for the single-jet and dual-jet ejectors. The parameter + is a
non-dimensional measure of the free stream speed. Its square is proportional to the
force created by the dynamic pressure of the free stream acting over the channel

width, divided by the primary jet thrust.

2 _ pULH
=~

Y (1.7)

The computed results show a steady decrease in performance with increasing free
stream intensity. The results for the single-jet and dual-jet ejectors show a similar
trend, with the dual-jet ejector out-performing the single-jet ejector throughout the
entire range of 4. The reason for the decrease in performance with increasing free
stream speed is due to an increase in the ram drag. The experimental data for a
single-jet configuration shown in part (B) of Figure 7.12 illustrates a similar trend.
The results of the control volume analysis, shown in part (C) of Figure 7.12 again
agree qualitatively with the results of the viscous-inviscid calculation. In comparing
the viscous-inviscid results with the control volume analysis, it is evident that the
dual-jet ejector achieves a higher degree of mixing (smaller exit velocity skewness
factor, A7) than does the single-jet ejector. The higher degree of mixing enables the
dual-jet ejector to maintain its advantage over the single-jet configuration as the

free stream intensity is increased.

7.2.7 Diffuser Length

The computed variation in thrust augmentation ratio with diffuser length for a
constant diffuser angle of 20° is shown in Figure 7.13. The computation shows that
the thrust augmentation ratio is a non-monotonic function of the diffuser length
when the diffuser angle is held fixed. For the single-jet case, the performance is
maximized at about Lp/L = 0.3. The computation for the dual-jet ejector shows

Increasing performance over the entire range of diffuser lengths investigated. The
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Figure 7.12: Effects of the free stream speed. (A) Computed results for single jet:
z;/2H =0, L/2H = 3.25, Lp/L =0, B =0, dual-jet: z;/2H = 0.44, y;/H = 0.5
o =0,L/2H =3.25, Lp/L =0, 8 =0. (B) Qualitative comparison with experi-
ment for a single-jet configuration (taken from Ref. [1]). (C) Comparison with the

control volume analysis.
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dual-jet performance should go through a maximum, however, but apparently at a
value of Lp/L greater than 0.45.

A physical explanation of the effect of a diffuser is easier to understand if the
results of Figure 7.13 are replotted as the thrust augmentation ratio versus the
diffuser area ratio. Such a plot is shown in Figure 7.14. The results look much the
same in this plot since the diffuser area ratio is directly proportional to the diffuser
length if the diffuser angle is held fixed.

Recall that the ejector exit pressure must equal the atmospheric value. Then, if
the turbulent mixing within the diffuser is neglected, the diffuser area ratio alone
sets the pressure at the entrance of the diffuser to a value less than atmospheric.
The lowered pressure within the ejector induces additional secondary flow to enter
the device and hence an increase in performance. At the same time, however, the
lowered pressure acting over the sloped diffuser walls creates a drag force. The
drag force increases faster than does the increment in performance due to the the
enhanced secondary flow. As the diffuser area ratio is increased, the pressure drag
soon dominates and the thrust augmentation ratio falls from its maximum value.

The boundary layers within the diffuser are neglected in the viscous-inviscid al-
gorithm and thus it is not possible to detect the decrease in performance associated
with boundary layer separation from the diffuser walls when high area ratios are
used. Thus the computed decrease in performance following the maximum value
of thrust augmentation is due to increasing pressure drag and not diffuser stall. In
interpreting the experimental data for the single-jet configuration shown for com-
parison in part (B) of Figure 7.14, it is difficult to determine whether the decrease
in performance after the maximum value is due to boundary layer separation or
from increasing pressure drag.

Part (C) of Figure 7.14 shows the corresponding result of the control volume
analysis for comparison with the viscous-inviscid computation. The trends are seen
to be quite similar.

In comparing the control volume results with the viscous-inviscid computation,
it is again evident that the dual-jet ejector achieves a higher degree of mixing (lower

exit velocity skewness, \;) than does the single-jet ejector. Because of its ability



106 CHAPTER 7. RESULTS

241

2.0 ]

1.9

1.8 /

DUAL-JET

b1
14 | —T SINGLEJET

(A) 1.0 1.2 1.4 W/H 1.6 1.8 2.0

26 I
1\2 = 12

<

9 LR T T T T T T T 2.2 //

z o

& el T /

E Y // /\2 = 14

S . 18 — 1

§ 16 T // A2 i

5 b E 14

D &

2 /—'ﬁ\‘ |

[

192

D e " L 1 . A f I 1.0

I~ ) (K] D) X3 ) 0 K] [ 1.4 10 12 14 16 18 20 22 2.4
(B) = DIFFUSER AREA RATIO, w/H (C) wW/H

Figure 7.14: Effects of the diffuser area ratio (a replotting of Figure 7.13). (A)
computed results for single jet: z;/2H =0, L/2H = 3.25, v =0, 8 = 20°, dual jet:
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to more efficiently mix the primary and secondary streams, the dual-jet ejector
is predicted to perform significantly better than the single-jet counterpart when a
diffuser is used. The advantage of the dual-jet ejector is most evident for greater

diffuser area ratios.

7.2.8 Diffuser Angle

The variation in thrust augmentation ratio with diffuser angle for constant diffuser
length is shown in Figure 7.15. The computed results look much the same as those
for varying the diffuser length while holding the angle fixed (c.f. Figure 7.13). The
similarity between the two sets of results suggests that the thrust augmentation
ratio is predominantly a function of the diffuser area ratio and not the details of the
diffuser shape. This hypothesis is tested by performing a computation where the
diffuser length and diffuser angle are varied simultaneously in such a way that the
diffuser area ratio remains fixed. The results of this computation are show in Figure
7.16. The flatness of the computed results indicates that the overall performance
is nearly independent of the details of the diffuser shape. The code predicts only
a slight advantage in using a short diffuser with a large angle. The fact that the
thrust augmentation ratio is essentially independent of the diffuser shape indicates

that there is a negligible amount of turbulent mixing taking place in the diffuser.

7.3 Optimization Studies

In an effort to demonstrate the usefulness of the viscous-inviscid algorithm for prac-
tical design problems, a few example optimization studies have been performed. In
these studies, the viscous-inviscid computer code is used as a subroutine in an op-
timization package. Due to the efficient nature of the viscous-inviscid algorithm,
configurations are optimized in manageable amounts of time on a VAX 11/780

machine.
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Figure 7.15: Effects of the diffuser angle for constant diffuser length. Computed
results for single-jet: z;/2H = 0, L/2H = 3.25, v = 0, Lp/L = 0.31, dual-jet:
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Figure 7.17: Configuration for the ejector inlet optimization. z;, 1, 8, U, and the
dynamic viscosity, u are variable. Fixed parameters are: L/2H = 3.25, d/2H = 0.5.

7.3.1 Single-Jet Ejector Optimization

The computer code for the single-jet ejector is used to optimize a thrust augmentor
inlet for several different flight conditions. The basic configuration is again the
geometry used in the JPL test. Figure 7.17 shows the variable-geometry inlet to
be used in the optimization study. The primary jet is free to move fore and aft
of the ejector entrance plane. A variable-length section of the inlet is also free to
rotate towards and away from the ejector centerline. In non-dimensional form the
design variables are: nozzle position - z;/2H, inlet lip length - z,/2H, inlet lip
rotation angle - 4, free stream speed - ¥ = pU2 H/Ty, and Reynolds number -
R. = V2HpT;/p. The Reynolds number becomes an important parameter in the
optimization study because a boundary layer calculation is included for the inlet

portion of the ejector. Inlet geometries that result in boundary layer separation are
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rejected in the optimization process.

A quasi-Newton optimization package[65] is coupled with the viscous-inviscid
code to systematically search through the design parameters. Constraints imposed
by geometrical restrictions as well as boundary layer separation are incorporated
into the optimization scheme through the use of algebraic penalty functions. The
penalty functions artificially lower the performance once a constraint is violated.

The free stream speed parameter, v and the Reynolds number R, are chosen to
define the flight condition. The optimization package then repeatedly evaluates the
viscous-inviscid code to determine the optimal values of the remaining parameters.

A concise statement of the optimization problem is

— o FL EIL
MAXIMIZE ¢_¢(2H,2H,o) (7.8)

Penalty Function Transformation

In its present form, the problem here is one of constrained optimization. Prob-
lems of constrained optimization are much more difficult to treat than are those of
unconstrained optimization. Accordingly, a penalty function transformation[66] is
used to transform the constrained optimization problem into one of unconstrained
optimization. The idea behind the penalty functions is simple. The constraints
are completely ignored until one of them is violated. When a constraint is vi-
olated, the performance is artificially lowered in an effort to redirect the search
away from the forbidden region. The penalty functions thus simulate the effects of
the constraints while allowing the problem to be treated under an unconstrained

optimization framework.

With the use of penalty functions, the objective is to maximize the following

N
MAXIMIZE g=¢— ) c:6? (7.9)

=1

where the ¢; are weighting factors and the é; are the penalty functions. The penalty
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functions themselves are composed of Heavyside functions. For example, a con-

straint of § < 6y i1s modeled as
6= (6—60)H(0 — 6,) (7.10)

where H is the Heavyside function. Note that the penalty is zero until 8 = 6.

The weighting coefficients c; are a measure of the relative importance of enforcing
each constraint. Low values of ¢; imply little attention paid to the constraints,
while larger values increase their importance. The magnitude of the weights have
a profound effect on the convergence of the optimization process. In general the
convergence degrades with increasing values of the weights. The best strategy for
obtaining convergence is to let the weights vary during the optimization process

such that their magnitude is steadily increased as the optimal point is neared.

Optimal Solutions

Optimal configurations are determined for a wide range of Reynolds number for
three values of the dimensionless free stream velocity, 4. Figure 7.18 shows the
variation in the performance of a thrust augmentor with an optimized inlet as a
function of both Reynolds number and free stream speed. The results indicate that
the performance is an increasing function of Reynolds number, with strongest de-
pendence in the low Reynolds number range. The rapid increase in performance at
low Reynolds numbers is associated with transition from a laminar to a turbulent
boundary layer. A laminar boundary layer can not withstand the severe adverse
pressure gradient which is present in the inlet region. In an effort to avoid inlet
stall, the optimization routine seeks a configuration that reduces the pressure rise
in the inlet region by decreasing the degree of turbulent mixing within the shroud.
In so doing, the performance is decreased since the mechanism of thrust augmen-
tation relies on mixing of the high momentum jet with the ambient fluid. As the
Reynolds number is increased to a value sufficient to induce transition to a turbu-
lent boundary layer, the performance is greatly enhanced due to the fact that the
turbulent boundary layer is able to negotiate the intensified pressure rise associated

with increased mixing within the shroud.
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Figure 7.18: Performance of the thrust augmentor with an optimized inlet
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When a non-zero free stream speed is included, the presence of a strong favorable
pressure gradient following the stagnation point at the shroud nose helps to energize
the boundary layer, thus making it more resilient to separation as the pressure rise
in the inlet region is encountered. In contrast, for the case of static operation, the
boundary layer begins at the tail end of the shroud, and due to its lengthy evolution
and less favorable pressure gradient, becomes thick and sluggish by the time it has
traveled the distance necessary to be swept into the inlet. The resulting thick,
weak boundary layer experiences separation at a smaller pressure rise compared to
the more favorably energized boundary layer. For this reason, increased levels of

performance are noted in the laminar regime when a free stream velocity is present.

In the high Reynolds number regime, performance decreases with increasing free

stream speed. This is due to an increase in the ram drag.

A few representative optimal shapes corresponding to the performance curves in
Figure 7.18 are shown in Figures 7.19 and 7.20. The results show that the optimal
design shapes are a much stronger function of Reynolds number than free stream
speed. At low Reynolds number, Figure 7.19 shows that the optimal nozzle position
is located up to one channel width ahe:d of the shroud, while the inlet is slightly
expanded. This combination serves to n.'nimize the adverse pressure gradient in
the inlet region as required by the laminar bcundary layer which develops there. In
Figure 7.20 as the Reynolds number is increased and the boundary layers undergo
transition, the nozzle moves approximately to th= entrance plane of the shroud. The
inlet lips rotate through the horizontal and then towards the jet as the Reynolds
number is increased. The length of the inlet lip wh'ch is rotated is seen to increase

with Reynolds number.

More detail on the behavior of the various design parameters as the Reynolds
number and dimensionless free stream speed are varied is shown in the following
sequence of plots. Figure 7.21 illustrates the optimal lip rotation angle as a function
of Reynolds number for three values of the dimensionless free stream speed. It can be
seen that the optimal lip rotation angles follow a similar trend for all three values
of dimensionless free stream velocity. As the Reynolds number is increased, and

laminar boundary layers undergo transition to turbulence, the lips rotate quickly
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Figure 7.19: Optimal configur t low and moderate Reynolds numbers
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Figure 7.20: Optimal configurations at high Reynolds numbers
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Figure 7.22: Optimal primary nozzle position as a function of Reynolds number

from large positive angles to a position of roughly zero angle. Further increase in
the Reynolds number causes a continual gradual decline in the lip rotation angle.
Differences in the optimal lip rotation angle due the free stream speed become

increasingly small in the high Reynolds number regime.

Displayed in Figure 7.22 is the optimal primary nozzle location as a function of
Reynolds number for the three values of the dimensionless free stream speed. The
trends are qualitatively similar for each of the three values. In the low Reynolds
number limit, the nozzle is located well in front of the shroud due to the fragile
nature of the laminar boundary layers. As the Reynolds number is increased and
the boundary layers become turbulent, the optimal nozzle position moves quickly

to a limiting point just inside the shroud. In light of the forward stagnation point
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Figure 7.23: Optimal inlet lip length as a function of Reynolds number

induced by the free stream and its positive effect on the boundary layer develop-
ment, the optimal nozzle location moves forward more quickly when a free stream
is present as compared to static operation.

Figure 7.23 illustrates the optimal length of the inlet lip plotted as a function
of Reynolds number for different values of the dimensionless free stream velocity.
The general trend of a short lip at low Reynolds number, maximum lip length at
moderate Reynolds number and a decline in lip length with very large Reynolds
number is seen to hold for all three values of the dimensionless free stream velocity.
Again due to the presence of a forward stagnation point, there is a shift in Reynolds
number when the results for static operation are compared with those for a non-
zero free stream. The rapid change in the lip length when moving out of the low

Reynolds number regime is due to boundary layer transition.
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Figure 7.24: Dual-jet ejector optimization.

7.3.2 Dual-jet Ejector Optimization

The dual-jet ejector code has been used to optimize the nozzle location and tilt
for the same configuration used in the parametric studies. Figure 7.24 shows the
basic configuration. The optimization is performed in the following way. With the
nozzle tilt fixed, the performance is computed for several different nozzle positions
within the solid rectangular box shown in Figure 7.24. The resulting data is used
to construct contour plots that show lines of constant thrust augmentation. The
optimal nozzle position is then found simply through inspection of the contour
maps. The results of the optimization study are shown in Figures 7.25-7.28.
Three contour plots are shown in each of the figures, corresponding to nozzle tilts
of —5°, 0°, and 5°. In order to give a sense of scale, the portion of the ejector shroud

contained within the dashed box in Figure 7.24 is included with the results.

Figure 7.25 shows the results for the basic ejector configuration. The most
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Figure 7.25: Lines of constant thrust augmentation for the unperturbed ejector.

L/2H =3.25,v=0,8=0.
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Figure 7.26: Lines of constant thrust augmentation for a shortened ejector.
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obvious feature of these results is that the performance is much more sensitive to
the lateral position of the nozzles than it is to the longitudinal position. The results
also indicate that the optimal lateral position of the nozzles is a function of both
the longitudinal position and the nozzle tilt. For each of the three tilt angles,
the optimal nozzle position has a different location. As the nozzles are rotated
towards each other, the optimal nozzle location moves out towards the ejector inlet
and up towards the channel wall. There is little variation in the maximum thrust
augmentation ratio achieved in these three cases.

Figure 7.26 shows a similar set of results for a shorter ejector (L/2H = 2.25).
The largest difference between these results and those for a longer ejector is that
the performance has become more equally sensitive to the lateral and longitudinal
nozzle positions. This is primarily due to the fact that the length over which the
flow has to mix has a stronger impact on performance when the latter is small (c.f.
Figure 7.5). The absolute values of the thrust augmentation have also dropped in
response to shortening the ejector.

Displayed in Figure 7.27 are performance contours for the basic ejector when a
free stream is present. With the exception of an overall drop in performance, the
results differ little from the static case shown in Figure 7.25.

Figure 7.28 shows lines of constant thrust augmentation for an ejector with a
diffuser. The results show that the presence of the diffuser enhances the sensitivity
of the nozzle location. This is primarily due to the fact that the effectiveness of the
diffuser is a strong function of the degree of mixing achieved prior to the diffuser (c.f.
Figure 2.3). Figure 7.29 shows a qualitative comparison of the computed results with
experimental data[67] for the effect of nozzle position on the performance of a dual
jet ejector. The experiment shows the same trend of the lateral position of the nozzle
having a greater impact on performance than does the longitudinal position. The
relative position of the optimal location is also similar. The absolute values of the
thrust augmentation found in the experiment are higher than the computed values

because a high area ratio diffuser was attached to the experimental configuration.
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Figure 7.29: Qualitative comparison with experiment for the Dual-jet ejector noz-
zle position. Computation: L/2H = 3.25, v = 0, a = 0, § = 0. Experiment:
L/2H =225 v=0, a =-30° 3 = 45°.




Chapter 8

Conclusions and

Recommendations

8.1 Summary

A viscous-inviscid methodology has been developed as an accurate and efficient
means of evaluating the performance of thrust augmenting ejectors. The inviscid
portion of the flow field is modeled with a higher order panel method, while an
integral method is used to solve for the viscous jet flow. The two solutions are
iteratively matched together in a process that allows each region to influence the
other en route to a converged solution.

Two separate algorithms are developed; one is capable of treating ejectors with
a single primary jet while the other is designed to treat configurations that use two
primary jets. The results of the single-jet model compare well with experimental
data. Lack of detailed experimental data for a dual-jet configuration prohibits a
critical comparison to be made for this case.

Both the single and dual-jet algorithms are used in a parametric study where
the influence of nozzle placement, ejector length, free stream speed, and a diffuser
are investigated. The results of this study are in good qualitative agreement with
the available experimental data.

The efficiency of the algorithms are demonstrated through two optimization
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problems. For the single-jet ejector, the nozzle position and the inlet shape are
optimized for various flight speeds and Reynolds numbers. The dual-jet ejector
algorithm is used to optimize the lateral and longitudinal nozzle position for different

nozzle tilt angles.

8.2 Conclusions of the Numerical Method

Viscous-inviscid algorithms have been successfully developed to model single-jet
and dual-jet ejector flow fields. The main conclusions that have been arrived at in

connection with the use of this numerical technique are as follows:

1. The viscous-inviscid technique yields accurate solutions. Predictions of the

model agree well with experimental data.

2. The viscous-inviscid technique is efficient. The computing time required for
a solution is roughly 1.5 and 3 minutes of CPU time for the single-jet and
dual-jet algorithms respectively on a VAX 11/780 machine.

3. The viscous-inviscid technique is robust in its ability to model arbitrary sym-
metric ejector configurations. This fact is demonstrated in the parametric

studies.

4. The viscous-inviscid technique is well suited as for thrust augmentor optimiza-

tion work.

8.3 Conclusions of the Parametric Studies

The parametric studies predict how the thrust augmentor performance is affected
by the details of the ejector shape. The main conclusions of the parametric studies

are as follows:

1. Inall cases the dual-jet ejector performs better than the single-jet counterpart.

The dual-jet ejector improvement is substantial; thrust augmentation ratio
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increases of 20% to 50% can be realized by replacing a single primary jet with

two primary nozzles.

2. The performance is maximized when the primary nozzle is located at the
entrance plane of the ejector for the single-jet configuration. For the dual-jet
ejector the performance is maximized when the jet nozzles are placed slightly

inside of the ejector.

3. For the dual-jet ejector, the performance is maximized when the jet trajecto-

ries are such that the jet centerlines remain equi-spaced between the ejector

symimetry plane and the ejector wall.

4. The thrust augmentation ratio increases with increasing ejector length. For
short ejectors, the performance of the dual-jet ejector increases more rapidly

with length than does the single-jet configuration.

5. Thrust augmentor performance degrades rapidly with increasing free stream

speed.

6. The inclusion of a diffuser improves the ejector performance. The dual-jet
ejector benefits more greatly from a diffuser than does the single-jet configu-

ration.

7. In the absence of separation, the details of the shape of the diffuser are rela-
tively unimportant. The thrust augmentation ratio is primarily a function of

the diffuser area ratio alone.

8.4 Conclusions of the Optimization Studies

Optimization studies were performed to demonstrate the efficiency of the viscous-

inviscid algorithms. The main conclusions of these studies are:

1. Boundary layer separation is a controlling factor in the design of an ejector

inlet.
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o

An ejector needs a variable-geometry inlet to maintain optimal performance

in all flight regimes.

3. Both the optimal longitudinal and lateral position of the primary nozzles in

a dual-jet ejector are a function of the nozzle tilt angle.

4. As the nozzles are tilted towards each other, the optimal nozzle position moves

towards the ejector wall and out towards the ejector inlet.

8.5 Recommendations

The work presented here should be considered as the first step in creating a general,
efficient procedure for modeling the ejector mixing problem. There are several

extensions of this work that are necessary to achieve the ultimate goal. These are:

1. Extend the analysis to account for the effects of compressibility. To do this,
both a temperature profile and a thermal energy equation will need to be
included in the integral formulation for the viscous region. For the inviscid
region, a compressibility correction to the panel method (such as the Prandtl-
Glauert correction) could be used if the secondary flow is purely subsonic. If
a supersonic secondary flow is to be modeled, a finite difference solution to

either the full potential equation or the Euler equations will be necessary.

2. Remove the point source of momentum approximation for the primary jet
and replace it with a more realistic finite-width model. This step will allow
the effect of the nozzle width to be determined and should make the overall

results more accurate by taking into account the jet potential core region.

3. Investigate the use of more sophisticated turbulence models. The algebraic
eddy-viscosity expression used here appears to be adequate, but is limited in
its rough approximation of the turbulent transport process. Other approaches,
such as the k¥ — e model, are based on a more realistic picture of turbulence.

Use of a model of this type should improve the reliability of the results.
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4. Extend the analysis to three or more primary jets. When this step is under-
taken, it should be done in conjunction with a finite-width jet nozzle model. It
is necessary to use a finite nozzle model to properly account for the secondary
flow blockage that results from placing additional nozzles within the ejector

inlet.

5. Ultimately, the model should be extended to three-dimensional flows. A three-

dimensional analysis would be a valuable aid in the design of compact ejectors

of low aspect ratio.
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Appendix A

Compressibility of the Secondary
Flow

In this appendix, some of the limitations of the incompressible flow assumption
are investigated. This investigation is necessary since most ejectors are designed
to operate in the compressible flow regime. The analysis contained here illustrates
that the thickness of the ejector shroud and the jet exit Mach number are important
parameters in ascertaining the extent to which the secondary flow is incompressible.
The analysis is begun with the definition of the thrust augmentation ratio:
To+ T
T
T,

= 14 T (A.1)

¢=

where T, is the primary nozzle thrust and T; is the thrust induced by the suction

acting over the leading edges of the shroud (see Figure A.1). The induced thrust

may be written as ;
T.=2 [ (pam — )y (4.2)

where the factor of 2 accounts for both leading edges of the ejector shroud. Let the

average pressure acting over the leading edges be denoted as p,.. Then
P L d A3
Pie = d /0 pay (A.3)
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Figure A.1: Ejector geometry and the principle of thrust augmentation.

The induced thrust may be written in terms of the average leading edge suction by

combining Egs. (A.2) and (A.3)
Ti = 2(patm - Z_)Ie)d (A4)

This result is combined with the expression for the thrust augmentation ratio given
in Eq. (A.1) to give
) (patm - ple)d

= 142

¢ * Pezugzt
= 1qplem (y_ Pe)(d (A.5)
- pexuzz B patm t ‘

where the primary jet thrust has been rewritten in terms of the exiting momentum
flux. Assume that the jet nozzle is designed to fully expand the primary flow to the
atmospheric pressure. In this case, the definition of the sound speed, ¢* = vp/p,

can be used in Eq. (A.5) to give

_ 2 Cer 2 Die d
p=1+ Y (ucx) (1 - patm> (;) (AG)
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or in terms of the Mach number
2 ﬁlc d
#=1+ M2, (1 - patm) <?) (A7)

A.1 Magnitude of the Leading Edge Suction

Equation (A.7) can be used to determine the magnitude of the average leading edge
suction for given values of the thrust augmentation, exit Mach number, and non-
dimensional shroud thickness. To investigate the magnitude of the leading edge

suction further, Eq. (A.7) is rewritten as

2 o) 2 4 =

For the purpose of illustration assume that v = 7/5 and ¢ = 2.0. The above relation
then becomes
Die 7 t
pf—m: =1- =M, (Zz') (A.9)
Figure A.2 shows the magnitude of the leading edge suction predicted by the
above equation as a function of the jet exit Mach number, with the non-dimensional
shroud thickness appearing as a parameter. The plot shows that for an extremely
thin shroud (d/t = 1), the leading edge pressure drops rapidly with increasing exit
Mach number. For this value of shroud thickness, the average leading edge pressure
is one half the atmospheric value at M,, = 0.85, and is required to be vacuum at
M., = 1.2. As the shroud thickness is increased, the leading edge suction decreases
so that the force developed on the ejector shroud is constant (i.e. constant thrust
augmentation has been assumed). For moderate shroud thickness (d/t = 5.0), the
leading edge pressure drops below one half atmosphere at M., = 1.9 and is required
to be vacuum at M,, = 2.7. For a thicker shroud (d/t = 10.0), the leading edge
suction is moderate for low Mach numbers. The leading edge pressure falls to one

half atmosphere at M,, = 2.7 and vacuum at M., = 3.8.
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Figure A.2: Magnitude of the shroud leading edge suction as a function of the jet
exit Mach number. v = 7/5 and ¢ = 2.0.
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A.2 Conditions for Effectively Incompressible Flow

Another useful feature of this analysis is that it can be used to give the conditions
under which an assumption of incompressible secondary flow is valid. This is done
by solving Eq. (A.7) for d/t:
d_ (¢-1) yMZ
t (1 — .Eu_) 2

Patm

(A.10)

For the purpose of illustration, assume that compressible effects become important

in the secondary flow when the Mach number at the shroud leading edge is greater

than 0.3. The isentropic relation

Pat y—1 =T
=14 (—) Mi] A1l
e = (14 (15) M (A.11)

indicates that M. = 0.3 corresponds to a leading edge pressure of ff’: = 0.9395
(for ¥ = 7/5). With this value of the leading edge pressure, together with v = 7/5
and ¢ = 2.0, Eq. (A.10) becomes

% = 11.56 M2, (A.12)
For a given jet exit Mach number, this equation gives the minimum shroud thickness
required to ensure that the leading edge Mach number is less than 0.3 for v =
7/5 and ¢ = 2.0. Figure A.3 shows a plot of the boundary predicted by Eq.
(A.12). The results show that the shroud thickness must increase with increasing
jet exit Mach number in order to keep the leading edge Mach number within the
effectively incompressible range. If the results of an ejector analysis that assumes
incompressible secondary flow are to be used, then the combination of jet exit Mach
number and non-dimensional shroud thickness must lie above the bounding curve

in Figure A.3.

A.3 Conclusions

The results of this study indicate that the thickness of the ejector shroud is an

important parameter in ejector design. In order to achieve a desired level of thrust
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Figure A.3: Boundary for the incompressible flow assumption. v = 7/5, ¢ = 2.0.
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augmentation at a given primary jet exit Mach number, the ejector shroud must
be sufficiently thick so that the leading edge pressure is not required to be non-
physically small. In addition, if the results of an incompressible analysis are used
in ejector design, the shroud must be sufficiently thick so that the secondary flow

remains effectively incompressible for the given operating jet exit Mach number.
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Appendix B

Computer Code

This appendix contains source listings for both the single-jet and dual-jet viscous-
inviscid algorithms. The various subroutines are grouped into four libraries: AUGLIB,
TWINLIB, PAN2LIB, and MATHLIB. The AUGLIB library contains the subrou-
tines for the single-jet viscous-inviscid matching procedure. The TWINLIB contains
the subroutines for the dual-jet viscous-inviscid matching procedure. The PAN2LIB
contains the subroutines needed to compute the higher-order panel method. Finally,
the MATHLIB contains various mathematics procedures. In addition to these li-
braries, the IMSL library is used to supply several mathematics routines.

Both the single-jet and dual-jet codes have undergone revisions since the time
that the results shown in this report were generated. Because of this, the code shown
in this appendix may produce results that differ slightly from those contained within

the results section.

B.1 Single-Jet Program AUGMENT

AUGMENT is the driving program for the single-jet viscous-inviscid algorithm.
Once compiled, it must be linked with the AUGLIB, PAN2LIB, MATHLIB, and
IMSL libraries. Input data are to be read from file CASE.DAT.
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PROGRAM AUGMENT
c
[ 2 T T Y T T T P LA E T L i T e L T Y P T Y

.

[ PROGRANM AUGMEET COMPUTES THE PERFORMANCE OF A TWO-DIMENSIONAL SINGLE-JET*
C INCOMPRESSIBLE FLOW EJECTOR. TBE CODE IS BASED ON A VISCOUS-INVISCID INTER-#
C ACTION ALGORITHM IN WHICH THE INVISCID REGION IS COMPUTED WITH A HIGHER
C ORDER PANEL METHOD AND THE VISCOUS ZONE IS COMPUTED WITH AN INTEGRAL METHOD.
C INPUT DATA IS READ FROM FILE CASE.DAT. THE ITERATION EISTORY AS WELL
C AS THE THRUST AUGMENTATION RATIO PREDICTION ARE WRITTEN TO FILE OUT.DAT.
C AN EXTENDED OUTPUT OPTION MAY BE SPECIFIED IN THE INPUT DATA FILE TO CAUSE
C THE JET SOLUTION AS WELL AS THE DETAILS OF THE MATCHIEG HISTORY TO BE
C
C
C
C
C
C
C

*

*® BB N % N

OUTPUT.
THIS PROGRAM MUST BE LINKED TO THE MATHLIB AND PAN2LIB LIBRARIES AS WELL*
AS THE IMSL MATH LIBRARY. *
THIS CODE IS OF EVOLUTIONARY ORIGIN AND CONSEQUENTLY MAY CONTAIN REGIONSe
POOR LOGIC STRUCTURE AND INEFFICIEET PROCEDURES. THERE HAS BEEF NO ATTEMPT =

MADE TO UPGRADE THE CODE TO A "PRODUCTION CODE" STATUS. *
-

L T T T P e P P R L
C

IMPLICIT REAL#8(A-H,0-2)

PARAMETER (MAX=300)

DIMENSION XBOD(MAX),YBOD(MAX),VE(MAX),XCP(MAX),YCP(MAX),

x ALPHA(MAX) ,D(MAX) ,ZETA(MAX) ,CX(3+MAX) ,CY(3+MAX),
: PD(MAX) ,PE(MAX) ,PF(MAX) ,PG(MAX) ,PH(MAX) ,PPI(MAX),
: C(MAX) ,IND1 (MAX) ,IND2(MAX),A(MAX) ,B(MAX), AMAT(MAX ,MAX),
: BMAT(MAX,MAX) ,WORK(8¢MAX) ,W(MAX«MAX) ,WINV(MAX*MAX),
x Q(MAX),AJET(100+MAX) ,BJET(100+MAX) ,XJET(50),YJET(50),
k UJET(50) ,VIET(50) ,R(5),
x 15 (250) , VS (250),5C(100) , UEXT(100)
LOGICAL DUMP1,STAG,DUMP,SEP,BLAYER
c
c »«» OPEN DATA FILES. BODY.DAT WILL CONTAIN THE COORDINATES OF THE s##s
c »s» EJECTOR SHROUD. PARAM.DAT CONTAINS THE FREE STREAM VELOCITY AS #+=
c s+« WELL AS THE ANGLE OF ATTACK. CASE.DAT CONTAINS THE INPUT DATA. %+
c s«s QUT.DAT CONTAINS THE CONVERGENCE HISTORY AS WELL AS THE THRUST #s#
c e+ AUGMENTATION RATIO. e
c
OPEN(UNIT=1, NAME=>BODY.DAT’,TYPE=’NEW’ ,FORM=>FORMATTED’)
OPEN(UNIT=2, NAME=’PARAN.DAT’ , TYPE=’NEW’ , FORM=’FORMATTED’)
OPEN(UNIT=4, NAME=>CASE.DAT’ , TYPE=’0LD’ , FORM=’ FORMATTED’)
OPEN(UNIT=21 ,NAME=>0QUT.DAT’ ,TYPE=’NEW’ , FORN=’FORMATTED’)
c
c s+« TOL1 IS THE CONVERGENCE TOLERANCE FOR THE VISCOUS-IBVISCID  ##
c s#+ MATCHING, TOL2 IS THE CONVERGENCE TOLERANCE FOR THE EXIT e
c »++ PRESSURE MATCHING. BO IS THE JET INITIAL BALF-WIDTH. e
c
TOL1=5.0D~3
TOL2=5.0D-3
BO=1.D-2
c
c #s+ VRITE THE FREE STREAM VELOCITY AND ANGLE OF ATTACK TO FILE ehe
c »++ PARAM.DAT. THE FREE STREAM VELOCITY WILL BE REDEFINED LATER #es
c »s¢ IF IT IS TO BE NON-ZERD. sae
c
V0=0.0D0
BETA=0.0D0
WRITE(2,5) VO,BETA
5 FORMAT(2F10.5)

REWIND 2
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[
C ss% READ INPUT PARAMETERS FROM FILE CASE.DAT. 5
Cc
CALL GETPRM(XJ,XLIP,THLIP,XEXIT,XDIF,DIFSLP,GAMMA,U10,DUMPL,
f 3 BLAYER,RE)
c
[ «s* TF THE EXTENDED OUTPUT OPTIOR IS CHOSEN, OPEN ADDITIONAL FILES.#**%
[ =s% VLCIET.DAT COBTAINS THE VELOCITY COMPONENTS ALONG THE JET an
[ »s* BOUNDARY. MCHIJET.DAT CONTAINS THE JET SOLUTION WITHIR THE e
C #»s+ VISCOUS-INVISCID MATCERING REGION. CEBNJET.DAT CONTAINS THE (i dd
c s+« JET SOLUTION WITHIN THE FULLY VISCOUS REGION. e
[
IF(DUMP1) THEN
OPEN(UNIT=9,BAME=’VELJET.DAT’ ,TYPE="NEW’ ,FORM=’FORMATTED’)
OPEN(URIT=10,KAME="MCHJET.DAT’,TYPE=>BEW’ ,FORM=’FORMATTED’)
OPER(UNIT=12,NAME="CHNJET.DAT’ ,TYPE=’ KEW’ ,FORM=?’FORMATTED’)
END IF
[
[od «*» GENERATE TEE EJECTOR GEOMETRY AND WRITE THE COORDINATES TO THE »#»
C #s+ FILE BODY.DAT. e
c
CALL BODGEN(XJ,XLIP,THLIP,XJS,NJF,NS,NF)
NJET=BJF-BJS+1
C
(o} =++ READ THE EJECTCR BODY CDORDIBATES AND PANEL SUCTION VELOCITIES »*x
C «+¢+ TNTO ARRAYS. e
c
CALL GETDAT(1,XBOD,YBOD,VN,N,VO,BETA)
c
C #+» COMPUTE THE FREE STREAM VELOCITY FRON THE PARAMETER GAMMA AND ##x
[ #++ THE PRIMARY JET THRUST. ex
[
CALL FRESTM(U10,BO,1.0DO,GAMMA,VO)
[
C sss COMPUTE GEOMETRICAL PARAMETERS FOR THE PANEL METHOD LA
[
CALL GEOM(XBOD,YBOD,ZETA,CX,CY,WORK,¥,XCP,YCP,ALPHA,D,
& I¥D1,IND2,PD,PE,PF,PG,PH,PPI,C)
[
[ #s» COMPUTE THE AERCDYNAMIC INFLUENCE MATRIX AND ITS INVERSE (2 33
[
CALL INFINV(XCP,YCP,ALPEA,D,IND1,IND2,PD,PE,PF,PG,PH,PPI,C,
& WORK,A,B,W,N,AMAT ,BMAT ,VINV)
[
C ss& COMPUTE THE INFLUENCE VELOCITY COEFFICIENTS ALORG THE JET ey
Cc »xs BOUNDARY. e
(o}
CALL JETCOF(M¥JS,BJF,XCP,YCP,ALPRA,D,IND1,IND2,PD,PE,PF,PG,PH,PPI,
& C,WORK,A,B,AMAT,BMAT,N,XJET,YJET,NJET, AJET,BJET)
c
[ ss+ ENTER 4 LOOP TO DO THE EXIIT PRESSURE MATCHING. L L2
C
JMAX=10
DO J=1,JMAX
[
C #*+ ENTER A LOOP TO DO TBE VISCOUS-INVISCID MATCHING s
[
IMAX=10
DO I=1,IMAX
[

c *+s COMPUTE THE PABEL SOURCE STRENGTES. e

*
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Qa

Q aGaoa

[¢]

Q

10

aaana

aa

Q

40

(2]

C
90
C

CALL STRETH(ALPHA,VE,VINV,N,V0,BETA,Q)
s+ COMPUTE THE VELOCITY COMPONENTS ALONG THE JET BOUNDARY

CALL JETVEL(AJET,BJET,NJET,Q,N,V0,BETA,UJET,VJET,
UOO,PATM)

+#+#+ COMPUTE THE JET SOLUTION WITHIN THE VISCOUS-INVISCID
s*+ MATCHING REGION.

CALL JET(NJS,NJF,XJET,YJET,UJET,VJET,¥JET,U10,B0,
VN,¥,DUMP1,I,XEND,R,RES)

*#s* COMPUTE THE FREE STREAM VELOCITY.

CALL FRESTM(U10,B0,U0O,GAMMA, VD)

#»* CHECK FOR CONVERGENCE IN THE VISCOUS-IEVISCID MATCHING.

IF(I.GT.1.AND.DABS(RES).LT.TOL1) GOTO 20

IF(I.EQ.IMAX) THEN
WRITE(21,10)
FORMAT(® VISCOUS-INVISCID MATCHIEG DID NOT COBVERGE’)
STOP

END IF

END DO

CONTINUE

*ss+ COMPUTE THE JET SOLUTION WITHIN THE FULLY VISCOUS REGIOK

CALL CHAREL(R,XEXIT,XEND,XDIF,DIFSLP,DUMP1,PEXIT,DFDRAG)

s++ UPDATE THE INITIAL JET VELOCITY

ROLD=RR
RR=(PATH-PEXIT)
IF(J.EQ.1) THER

WW=0.2

ELSE

W¥=-(U10-U100LD}/ (RR-ROLD)

END IF
U100LD=U10
U10=U10+WW*RR

*++ WRITE CONVERGENCE INFORMATION.

WRITE(21,40) PATM,PEXIT,RR,U10
FORMAT(’> PATM = ’,F10.5,’ PEXIT = °>,F10.5,

>R = ?,F10.5,’ U10 = ’ F10.5)

*s+ CHECK FOR CONVERGENCE IN THBE EXIT PRESSURE MATCHING.

IF(DABS(RR) .LT.TOL2) GOTO 90

END DO

CONTINUE

%%
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IF(BLAYER) THEN
[
[+ «s» COMPUTE THE EJECTOR SURFACE VELOCITIES. en
c
CALL SURFVEL(XEND,XEXIT,ICP,YCP,D,AMAT,BMAT,Q, N, *
1 V0,BETA,SC,UEXT,NEXT,XLEN,STAG)
C
Cc «++ COMPUTE THE BOUNDARY LAYER. L
[
DUMP=.FALSE.
ESTEP=20
CALL AUGLYR(SC,UEXT,NEXT,RE,STAG,DUMP,BSTEP,SEP,SCRIT)
C
C s+*» YRITE THE RESULTS. LT
C
IF(SEP) THESN
WRITE(21,100)
100 FORMAT(/,’> SEPARATED BOUNDARY LAYER’,/)
ELSE
WRITE(21,110)
110 FORMAT(/,’> B0 SEPARATION’,/)
EED IF
EED IF
c
[ ss» COMPUTE THE DIFFUSER EXIT WIDTH. L L]
C
BEXIT=1.0DO+(XEXIT-XDIF)*DIFSLP
c
[ #s* COMPUTE THE EJECTOR PERFORMANCE (i34
[
CALL PERFRM(R,BEXIT,ALPHA,D,AMAT,BMAT,Q,N,V0,BETA,
1 U10,U00,BO, DFDRAG, NS, §F,PEI)
c
C #»% REWRITE TBE EJECTOR BODY GEOMETRY FILE WITH THE CORRECT VALUE s==
[ «s+ OF THE PANEL SUCTION VELOCITIES. ey
[
REWINED 1
DD I=1,N+1
WRITE(1,120) XBOD{(I),YBOD(I),VE(I)
120 FORMAT(3F10.5)
END DO
[
[ *s» DELETE FILE PARAM.DAT. e
[
CLOSE(UNIT=2,STATUS=’DELETE’)
C

STOP
EED
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B.1.1 Sample Input

Below is a listing of sample input data contained in file CASE.DAT.

0.0000 X COCRDINATE OF THE JET NOZZLE

1.0000 X COORDINATE OF THE SHROUD LIP

0.0000 ROTATION ANGLE OF THE SEROUD LIP (IN DEGREES)

6.5000 SHROUD LENGTH

6.5000 X COORDINATE OF THE DIFFUSER START

0.0000 DIFFUSER SLOPE

0.0000 FREE STREAM SPEED PARAMETER, GAMMA

15.0000 INITIAL JET CEETERLINE VELOCITY
1 EXTENDED OUTPUT OPTION (1 FOR EXTRA OUTPUT, O FOR STANDARD)
i BOUNDARY LAYER CALCULATION CONTROL (1 CALCULATES IT, O DOESKT)

1.00ES THRUST BASED REYROLDS NUMBER

B.1.2 Sample Output
Below is the output written to file OUT.DAT

PATM = 0.79853 PEXIT = 0.65228 R = 0.14625 U10 = 15.02925
PATM = 0.79280 PEXIT = 0.64757 R = 0.14523 U10 = 19.15580
PATM = 1.04161 PEXIT = 1.20321 R = -0.16160 U10 = 16.98242
PATM = 0.92311 PEXIT = 0.90936 R = 0.01375 U10 = 17.15281
PATH = 0.91671 PEXIT = 0.91357 R = 0.00314 U10 = 17.20317

SEPARATED BOUNDARY LAYER

JET MOMENTUM = 2.72349 EXITING MOMEETUM = 3.91059
IBDUCED THRUST COMPUTED FROM SURFACE PRESSURES = 1.25313
INDUCED THRUST COMPUTED FROM MOMENTUM THEOREM = 1.18709
PRESSURE DRAG ASSOCIATED WITH THE DIFFUSER = 0.00000
TERUST AUGMENTATION RATIO FROM SURFACE PRESSURES = 1.46012
THRUST AUGMENTATION RATIO FROM MOMENTUM THEOREM = 1.43587
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B.2 Dual-Jet Main Program DUOAUG

DUOAUBG is the driving program for the dual-jet viscous-inviscid algorithm. Once
compiled, it must be linked to the TWINLIB, PAN2LIB, MATHLIB, and IMSL
libraries. Input data are to be read from file CASE.DAT.

PROGRAM DUDAUG

Cc
(o L T T T T T
C -
C PROGRAM DUCAUG COMPUTES THE PERFORMANCE OF A TWO-DIMENSIONAL, *
C INCOMPRESSIBLE FLOW DUAL-JET EJECTOR. THE CODE IS BASED ON A VISCOUS- -
C INVISCID ALGORITHM IF WHICH THE IBVISCID REGION IS COMPUTED WITH A HIGHER- »
C ORDER PANEL METHOD AND THE VISCOUS REGION IS COMPUTED WITH AN INTEGRAL *
C METHOD. »
[ IKPUT DATA IS READ FROM FILE CASE.DAT. THE ITERATION HISTORY AS WELL AS »
C TEE THRUST AUGMENTATION RATIO IBFORMATION ARE WRITTEN T0 FILE OUT.DAT. AN =
C EXTENDED OUTPUT OPTION MAY BE SPECIFIED 1IN THBE INPUT FILE TO CAUSE THE JET =*
C SOLUTIOE AS WELL AS MORE INFORMATION ABOUT THE MATCHING PROCEDURE TO BE OUT-»
C PUT. *
Cc THIS PROGRAM MUST BE LINKED TOC THE PAN2LIB AXD MATHLIB LIBRARIES AS WELL=
C AS THE IMSL LIBRARY MATH LIBRARY. *
[ THIS CODE IS OF EVOLUTIONARY ORIGI¥ AND CONSEQUENTLY MAY CONTAIN REGIONS*
C OF POOR LOGIC STRUCTURE AND INEFFICIENT PROCEDURES. THERE HAS BEEN NO *
C ATTEMPT TO UPGRADE THE CODE TO A "PRODUCTION CODE" STATUS. *
Cc *
Cc *es LATEST REVISION - 23 APR 1987 #ss *
C *
oy T T T T Ty T T P TP T
C
IMPLICIT REAL*8(A-E,0-2)
LOGICAL DUMP1
PARAMETER (MAX=250)
DIMENSION XBOD(MAX) ,YBOD(MAX),VE(MAX) ,XCP(MAX),YCP(MAX),
1 ALPHA(MAX) ,D(MAX) ,ZETA(MAX) ,CX(3#¥AX) ,CY(3%MAY),
2 PD(MAX) ,PE(MAX) ,PF(MAX) ,PG(MAX) ,PH(MAX) ,PPI(MAX),
3 C(MAX) ,IND1(MAX) ,IND2(MAX) ,WORK(8sMAX) ,W(MAX*MAX),
4 WINV(MAX*MAX) ,AVEC(MAX) ,BVEC(MAX) ,AMAT (MAX#MAX) ,
5 BMAT(MAX+MAX) ,Q(MAX) , ALWR(100#MAX) ,BLWR (100+MAX),
6 AUPP(100#MAX) , BUPP(100*MiX)
C
[ ss» AREA21 IS SHARED WITH DERIV2 AND TWOJET e
[
COMMON UO,U1,P,A,B,Y1,ALP
COMMON /AREA21/ DIFSLP,IDIFF
C
[ s+ OPEN INPUT AND OUTPUT FILES. CASE.DAT CONTAINS THEE INPUT e
[ #+¢ VALUES. OUT.DAT WILL CONTAIN THE OUTPUT. “xs
C
OPEN(UNIT= 4 ,NAME=’CASE.DAT’ ,TYPE=’OLD’,FORM=’FORMATTED’)
OPEN(UNIT=21 ,NAME=’0UT.DAT’ ,TYPE=>REW’ ,FORM=> FORMATTED’)
C
[ #»s TOL1 IS THE TOLERANCE FOR THE VISCOUS-INVISCID MATCHING s
[ #ss TOL2 IS THE TOLERANCE FOT THE EXIT PRESSURE MATCHING s
C

ALP=DLOG(1.0DO+DSQRT(2.0D0))
TOL1=5.0D-3
TOL2=1.0D-3
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c
c s*» READ IN TEE INPUT VALUES ren
c
CALL GETPRM(XJ,YJ,Y1DOTO,XEXIT,D1,D2,GAMMA,U10,B0,DUMP1)
DIFSLP=D1
XDIFF=D2
c
c »ss VRITE THE FREE STREAM VELOCITY AND THE ANGLE OF ATTACK TO 4  w##
c »s+ DATA FILE. TBE VALUE OF FREE STREAM SPEED WILL BE CHAKGED P
c #s» LATER IF REQUIRED. -
c
OPEN(UNIT= 2,NAME=’PARAM.DAT’ ,TYPE=’NEW’, FORM=’FORMATTED’)
V0=0.0D0
BETA=0.0DO
WRITE(2,8) VO,BETA
8 FORMAT(2F10.5)
REWIED 2
c
c »+% WRITE A¥ INITIAL GUESS FOR THE JET TRAJECTORY TO FILE JETCL.DAT##s+
c
OPEN(UNIT=20,NAME=’JETCL.DAT’ ,TYPE=’NEW’ ,FORM=’FORMATTED’)
ICL=XJ
YCL=Y]
WRITE(20,8) XCL,YCL
1CL=12.0D0
YCL=YJ+Y1DOT#(XCL-XJ)
WRITE(20,8) ICL,YCL
REWIND 20
¢
c s+ IF THE EXTENDED OUTPUT OPTION IS CHOSEN, OPEN ADDITIONAL OUTPUTss#*
c s+ FILES. LWRJET.DAT CONTAINS THE VELOCITIES AT THE LOWER SIDE s##
c »s» OF THE JET. UPPJET.DAT CONTAINS THE VELOCITIES AT THE UPPER  ###
¢ ss» SIDE OF TEE JET. MCHJET CONTAINS TBE JET SOLUTION OVER THE e«
c #s+ VISCOUS-INVISCID MATCHING REGION. CHNJET COBTAINS TEE JET s
c »ss SOLUTION WITHIN TEE FULLY VISCOUS REGION. »en
c
IF(DUMP1) THEN
OPEN(UNIT= 9,NAME=’LWRJET.DAT’,TYPE=’NEW’ ,FORM="FORMATTED’)
OPEN(UFIT=10,BAME="UPPJET.DAT’, TYPE="BEW’ , FORM=>FORMATTED?)
OPEN(UBIT=11,NAME=’"MCEJET.DAT’, TYPE=>NEW’ , FORM=>FORMATTED’)
OPEN(UNIT=12,NAME=>CHNJET.DAT’ , TYPE="NEW’ , FORM=’FORMATTED’)
END IF
c
10 CONTINUE
c
c »s» OPEF A DATA FILE TO HOLD THE EJECTOR SURFACE COORDINATES e
c
OPEN(UNIT=1, NAME=’BODY.DAT’, TYPE=’ BEW’ , FORM=>FORMATTED’)
c
c *#s GENERATE THE EJECTOR SURFACE COORDINATES AN THE INITIAL GUESS ##s
c #++ FOR THE PANEL SUCTION VELOCITIES .
c
CALL DUOBOD(XJ,YJ,DY1DX0,Y1CS,NJLS,NILF,N3US,NJUF,NS,NF,TER)
IF(IER.EQ.1) THEN
WRITE(3,101)
101 FORMAT(’> ERROR IN DUOAUG: DUOBOD RETURNED WITH IER=1’)
STOP
END IF
c
c sss READ THE EJECTOR SURFACE COORDINATES AND THE PANEL SUCTICN e

*++ VELOCITIES INTO DATA ARRAYS.

xE%
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CALL GETDAT(1,XBOD,YBOD,VE,¥,V0,BETA)

*+» COMPUTE THE CORRECT VALUE OF THE FREE STREAM SPEED.
CALL FSTRM(U10,B0,1.0D0,0.0DO,GAMMA,VO)

*+*+« COMPUTE GEOMETRICAL PARAMETERS FOR THE PABEL METHOD.

CALL GEOM(XBOD,YBOD,ZETA,CX,CY,WORK,N,XCP,YCP,ALPHA,D,
1 IED1,IND2,PD,PE,PF,PG,PH,PPI,C)

#+s COMPUTE THE INFLUENCE COEFFICIENT MATRIX AED ITS IBVERSE

CALL INFINV(XCP,YCP,ALPHA,D,IND1,IND2,PD,PE,PF,PG,PH,PPI,C,
1 WORK, AVEC, BVEC, ¥, N, AMAT, BMAT , WINV)

s*s COMPUTE THE INFLUENCE VELOCITY COEFFICIENTS ALONG THE JET
»x% BOUNDARY.

CALL JETMAT(RJLS,NJLF,BJUS,NJUF,XCP,YCP,ALPEA,D,TND1,IND2,
1 PD,PE,PF,PG,PH,PPI,C,VORK,AVEC, BVEC, AMAT, BMAT, N,
2 ALWR, BLVR, AUPP, BUPP)

*s+ PREPARE FOR AN UPDATED JET TRAJECTORY

CLOSE(UNIT=20,STATUS=’DELETE’)
OPEN(UNIT=20,§AME=>JETCL.DAT’> ,TYPE=’NEW’ FORM=’FORMATTED’)

s++ ENTER A LOOP TO CONVERGE TEE EXIT PRESSURE

IMAX=10
DO J=1,IMAX

s+ EXTER A LOOP TO PERFORM THE VISCOUS-INVISCID MATCHIEG

IMAX=10
DO I=1,IMAX

*ss COMPUTE THE PANEL SQURCE STRENGTES
CALL STRNTH(ALPHA,VN VINV,X,V0,BETA,Q)
**+ COMPUTE THE VELOCITIES ALONG THE JET BOUNDARY

CALL VLCJETCALWR,BLWR,AUPP,BUPP,Q,NJLS,XJLF,¥JUS,KIUF,
1 X,V0,BETA, PATN)

s+ COMPUTE THE JET SOLUTION WITHIN THE MATCHIRG REGION

CALL ONEJET(®JLS,NJLF,NJUS,NJUF,YJ,¥1D0TO,U10,B0,V0,
1 ALPHA,VNE,¥,DUNP1,I,U00,A0,XEND, YLEND,RES)

*ss COMPUTE THE CORRECT VALUE OF THE FREE STREAM VELOCITY
CALL FSTRM(U10,BO,U00,A0,GAMMA,VD)
#+s CHECK FOR CONVERGENCE IN THE VISCOUS-INVISCID MATCHING

IF(I.GT.1.AND.DABS(RES) .LT.TOL1) GOTC 20
IF(I.EQ.IMAX) THEN

*x¥

b X 14

LR L]

k%
k%

Ex 1]

5%

&

Ed 2
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WRITE(3,19)
19 FORMAT(’> VISCOUS-INVISCID MATCHING DID NOT CONVERGE ?)
IER=1
GOTO 200
EED IF
c
EXD DO
c
20 CONTINUE
C
c +++ COMPUTE THE JET SOLUTION WITHIN THE FULLY VISCOUS REGION s
c
CALL TWOJET(XEXIT,XEND,DUMP1,PEXIT,DFDRAG,IER)
TF(IER.EQ.1) GOTO 200
c
C s+s UPDATE THE JET INITIAL VELOCITY e
c
ROLD=R
R=(PATM-PEXIT)
IF(J.EQ.1) THEN
W¥=0.2
ELSE
Ww=- (U10-U100LD)/ (R-ROLD)
END IF
IF(DLBS(WW*R).GT.3.0D0) TEEX
WW=WW/2.0D0
END IF
U100LD=U10
U10=U10+WWsR
c
c s+x WRITE ITERATION INFORMATION e
c
WRITE(21,30) PATM,PEXIT,R,U10
30 FORMAT(’ PATM = ®,F10.5,’ PEXIT = ’,F10.5,
> R = *,F10.5,’ U10 = ?,F10.5)
c
c #++ CHECK TO SEE THAT THE PANEL GEOMETRY IS CONSISTENT WITH s
c #++ THE COMPUTED JET CESTERLINE. IF NOT START OVER BY e
c s+« GENERATING A BEV PANEL CONFIGURATION rhe
c
DIFF=Y1EED-Y1CS
IF(DABS(R) .LT.0.1DO. AND.DABS (DIFF) .GT.0.05) THEN
WRITE(21,25)
25 FORMAT(/,’ MEW BODY GENERATED ’,/)
CLOSE(UBIT=1,STATUS=’DELETE’)
GOTO 10
END IF
c
c #++ CHECK FOR CONVERGENCE IN THE EXIT PRESSURE MATCHING s
c
IF(J.GT.1.AND.DABS(R) .LT.TOL2) GOTOD 40
IF(J.EQ.JMAXY) THEN
WRITE(3,31)
31 FORMAT(’ ERROR IN DUOAUG: PRESSURE MATCHING DID °’
’BOT CONVERGE’)
IER=1
GOTD 200
END IF
EED DO
c

#s+ COMPUTE TBE THRUST AUGMENTATION RATIO
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C
40

C
200

[+

QOO0

CALL PERFOR(ALPHA,D,AMAT,BMAT,Q,N,VC,BETA,U10,U00,A0,BO,
DFDRAG, XS, ¥F,BJLF,NJUS,PEI)

CONTINUE

#s+ WRITE THE EJECTOR SURFACE COORDINATES ALOEG WITE THE CORRECT
=s» VALUE OF THE PANEL SUCTION VELOCITIES.

REWIND 1

DO I=1,N+1
WRITE(1,111) XBOD(I),YBOD(I),VE(I)
FORMAT(3F10.5)

END DO

#xs CLOSE DATA FILES

CLOSE(UNIT=1,STATUS=’KEEP’)
CLOSE(UNIT=2,STATUS="KEEP’)
CLOSE(UNIT=4,STATUS=’KEEP’)
IF(DUMP1) THEN
CLOSE(UNIT=9,STATUS=’KEEP’)
CLOSE(UNIT=10,STATUS=’KEEP’)
CLOSE(URIT=11,STATUS=>KEEP’)
CLOSE(UNIT=12,STATUS=’KEEP’)
END IF
CLOSE(UNIT=20,STATUS=’KEEP?)
1LO0SE(UNIT=21,STATUS="KEEP’)

STOP
END

xk %
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B.2.1 Sample Input
Below is a set of sample input data contained in file CASE.DAT.

2.0000 I COORDINATE OF THE PRIMARY NOZZLE
1.0000 Y COORDINATE OF THE PRIMARY BOZZLE
0.0000 JET INITIAL CENTERLINE SLOPE
13.2100 X COORDINATE OF SHROUD EXIT
0.3640 DIFFUSER SLOPE
9.0000 I COORDINATE OF THE DIFFUSER START
0.5000 FREE-STREAM SPEED PARAMETER
10.0000 INITIAL JET CENTERLINE VELOCITY
0.0150 INITIAL JET HALF-WIDTH
1 EXTERDED OUTPUT OPTION: 1 FOR EXTRA OUTPUT O FOR PLAIN

B.2.2 Sample Output

Below 1s the output data written to file OUT.DAT

PATHM = 2.25421 PEXIT = 2.80465 R = -0.55044 U10 = 9.88991
PATM = 2.28385 PEXIT = 2.81609 R = =0.53224 U10 = 8.28042
PATM = 1.94640 PEXIT = 2.25369 R = -0.30729 U10 = 6.08176
PATM = 1.50727 PEXIT = 1.60380 R = -0.09653 U10 = 5.07471
BEW BODY GENERATED

PATH = 1.28629 PEXIT = 1.31879 R = -0.03250 U10 = 5.06821
PATK = 1.30357 PEXIT = 1.33681 R = -0.03323 U10 = 5.36218
PATM = 1.33723 PEXIT = 1.38920 R = -0.05197 U10 = 4.54686
PATM = 1.26238 PEXIT = 1.26547 R = ~0.00309 U10 = 4.49526
PATH = 1.23384 PEXIT = 1.23263 R = 0.00121 U10 = 4.50974
PATM = 1.22981 PEXIT = 1.22915 R = 0.00066 U10 = 4.52713
SHROUD THRUST SIKPSCNS RULE, MIDPOINT RULE: 0.66204 0.66908
N0ZZLE CAP THRUST SIMPSONS RULE, MIDPOINT RULE: 0.02953 0.05889
JET MOMEBTUM = 0.93306 EXITING MOMEXTUM = 1.54414

INDUCED THRUST COMPUTED FROM SURFACE PRESSURES = 0.69157
INDUCED THRUST COMPUTED FROM MOMENTUM THEOREM = 0.71036
PRESSURE DRAG ASSOCIATED WITH THE DIFFUSER = 0.22717
THRUST AUGMENTATION RATIO FROM SURFACE PRESSURES = 1.63478
THRUST AUGMENTATIGE RATIO FROM MOMENTUM THEOREM = 1.65492
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B.3 Subroutine Libraries

B.3.1 Single-Jet Library AUGLIB

SUBROUTINE AUGLYR(X,V,¥,R,STAG,DUMP,ESTEP,SEP,SCRIT)
C
CHEARESARXABRRBREIRE SR RRASSASREERRAARBARE RN RAEERER R AR RN EIRERRAR R A&
THIS CODE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUTICS
AND ACOUSTICS BY THOMAS LUND. LATEST REVISION 8 SEPT. 1984.

THIS SUBROUTINE COMPUTES LAMINAR AND TURBULENT BOUEDARY LAYER
DEVELOPMENT, GIVER AN EXTERBAL VELOCITY DISTRIBUTION. THE EQUATIONS
SOLVED HERE ARE BASED ON AN INTEGRAL FORMULATION OF TBE BOUNDARY
LAYER EQUATIONS. 1IN TEE TURBULEBT CASE, THE BORMAL TURBULENT
STRESSES ARE NEGLECTED IN COMPARISOF WITH THE TURBULEET SBEARING
STRESS. THE TURBULENT BOUNDARY LAYER EQUATIONS USED BERE ARE FOURD
IR SCHLICHTING (7TR ED) P. 676, EQS. (22.7a,b), (22.8a,b), AND
FIG 22.7

THE VELOCITY DISTRIBUTION DESCRIBED NEED NOT HAVE A
STAGNATION POINT (SEE DESCRIPTION OF PARAMETER STAG). THE CODE
ASSUMES THAT ALL BOUBDARY LAYERS HAVE A LAMINAR ORIGIN. TO AVOID
SIBGULARITIES AT THE ORIGIN, INITIAL VALUES OF THE VARIOUS CHARAC-
TERISTIC TEICKNESSES AERD SHAPE FACTORS ARE ASSUMED BY COMPUTING
THESE QUANTITIES AT A SMALL DISTANCE FROM THE ORIGIN USIEG ANALYTIC
EXPRESSIONS FOR A LAMIBAR BOUEDARY LAYER IN A ZERC-PRESSURE GRAD-
IERT OUTER STREANM.

THE LAMIEAR BOUNDARY LAYER EQUATIONS ARE MARCEED AWAY FROM THE
INITIAL DATA UNTIL THE END OF THE BODY IS REACHED, OR EITHER TRANS-
ITION TO TURBULENT FLOW, OR LAMINAR SEPARATION IS DETECTED. IF
LAMINAR SEPARATION IS DETECTED, THE CODE HALTS AT THE POUINT OF
SEPARATION. IF TRANSITION IS DETECTED, TEE CODE SWITCHES T0 THE
TURBULEXT BOUNDARY LAYER EQUATIORS, AND CONTINUES TO MARCH UNTIL
EITRER THE END OF THE BODY IS REACHED, OR TURBULERT SEPARATION IS
DETECTED. IF TURBULENT SEPARATION IS DETECTED, THE CODE HALTS AT
THE POINT OF SEPARATION.

IF OUTPUT IS SPECIFIED (SEE DESCRIPTION OF PARAMETERS DUMP AND
ESTEP) THE FOLLOWING DATA VWILL BE PRIBTED TD UNIT 3 FOR SPECIFIED
VALUES OF THE SURFACE COORDINATE: SHAPE FACTOR H32, DISPLACEMENT
THICKENESS, MOMENTUM THICKNESS, ENERGY THICKNESS, AND LOCAL SKINX
FRICTION COEFFICIEBT

*sPARAMETER DESCRIPTIONS*»

INPUT:

X - VECTOR OF LENGTE N CONTAINING THE VALUES OF THE SURFACE
COORDINATE AT WHICH EXTERNAL VELOCITIES ARE GIVEN. THE
SURFACE COORDINATES MUST START FROM ZERO (X(1)=0.0), BE
IN INCREASING ORDER, AND BE NORMALIZED BY THE SURFACE
LEEGTH (X(N)=1.0).

V - VECTOR OF LENGTH ¥ CONTAINING THE VALUES OF THE EXTERNAL
VELOCITY WHICH CORRESPOND TO THE SURFACE COORDINATES
CONTAINED IN VECTOR X. THE EXTERNAL VELOCITY MUST BE
NORMALIZED BY THE CHARACTERISTIC VELOCITY OF THE PROBLEX

¥ - NUMBER OF SURFACE COORDINATE AND EXTERNAL VELOCITY DATA
PAIRS (LENGTE OF VECTORS X AND V).

R - GLOBAL REYNOLDS NUMBER DEFINED AS R=UcsL/vis, WBERE Uc
IS THE CHARACTERISTIC VELOCITY OF THE PROBLEM, L IS THE
SURFACE LENGTH, AND vis IS THE COEFFICIENT OF KINEMATIC
VISCOSITY.

STAG - LOGICAL VARIABLE USED TO SPECIFY WHETHER OR NOT A

o000 00O 0000000000000 O0O0aO00000000O0000a0a0
LN R TR R S B B N IR R BRI R R R K Y R Y N BE EE B R R R BE Y I S T R I R R R N SR 2 R R I R R R R R 2R 2R 2N
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C STAGNATION POINT EXISTS. IF STAG IS SET TO .TRUE. & -
Cc STAGNATION POINT IS ASSUMED, IF SET TO .FALSE. N0 STAG- =
C SATION POIBT IS ASSUMED. *
C DUMP - LOGICAL VARIABLE USED TC SPECIFY WRETHER OR NOT OUTPUT =»
[ IS TO BE GENERATED. IF DUMP IS SET TO .TRUE. OUTPUT IS =
[+ SENT TO UNIT 3, IF DUMP IS SET TO .FALSE. N0 OUTPUT IS *
c GENERATED. =
C NSTEP - INTEGER VALUE USED TO SPECIFY THE BUMBER OF STATIONS AT =
C WHICH OUTPUT IS TO BE GENERATED. THE STATIONS ARE EQUI- =»
c SPACED. H
C *
C OUTPUT: *
c SEP - LOGICAL VARIABLE USED TO INDICATE A SEPARATED BOUNDARY =
Cc LAYER. 1IF EITHER LAMINAR OR TURBULENT SEPARATION IS *
(o DETECTED, SEP IS SET TO .TRUE. 1IF BO SEPARATION IS =
[o} DETECTED, SEP IS SET TO .FALSE. *
[ SCRIT - DIMENSIONLESS SURFACE COORDINATE AT WHICH THE BOUNDARY =
C LAYER HAS SEPARATED. 1IF NO SEPARATION OCCURS SCRIT =1 =
C INDICATING TEE END OF THE BODY -
Cc *
[y T Ty T T e e Y]
C
IMPLICIT REAL*8(A-H,0-Z)
EXTERNAL FCEL,FCHT
DIMERSION X(100),V(100),C(24),¥(2,9),Y(2),YD(2)
COMMON /BLCVEL/ XX(100),VV(100),RR
COMMOE /BLCSPLN/ SPLE(100),¥X
COMMOB /AREA10/ XC
COMMON /AREA12/ XEXIT
LOGICAL STAG,LMER,SEP,DUMP
Cc
Cc »ss FUNCTION F1 RETURES H12 GIVEN H32 s##=
c
F1(H32)=E32/(3.0D0*H32-4.0D0)
C
C »«x FUNCTION WSHR RETURES THE LOCAL TURBULENT SKIN FRICTION Ld g
c s»» COEFFICIENT DIVIDED BY 2, GIVEN THE SEAPE FACTOR H12 kX
C »»» AND THE REYNOLDS WUMBER BASED ON MOMENTUM THICKEESS RD2. #*=
C
WSHR(H12,RD2)=0.0245D0*(1.0D0O-2.0959D0*DLOG10{H12))**1.705D0
3 /RD2%#+0.268D0
Cc
Cc «+s 1§ ORDER TO PASS SUBROUTINE ARGUMENTS IN COMMON AS WELL, »#=
C »+«+ WE HAVE TO DEFIBE REDUNDANT ARRAYS XX AND VV, AND en
[+ sss CONSTANTS RR AND ¥ bk
[
D01 I=t,¥
XX(I)=x(I)
vV (D)=v(I)
1 CONTINUE
RR=R
=N
¥IF=N-1
[
Cc #x* SPLINE FIT THE VELOCITY DATA USING AUGLIB ROUTINE LESPLN s#=
[

CALL LWSPLN(X,V,N,SPLN,IER)
IF(IER.NE.O) TEEN
WRITE(3,642) IER
642 FORMAT(’ IN SUBROUTINE AUGLYR LNSLPLN RETURNED WITH THE ERROR’
3 CONDITION IER =’,1I5)
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STOP
END IF
c
c sss DS IS THE INTEGRATION STEP SIZE, SI IS TEE IBITIAL CONDITION *+«
c s+s STATION rex
) c
DS=5.0D-4
$I=0.05D0
c
¢ #++ DEFIEE INTEGRATIOR DO LOOP UPPER LIMIT *s#
c
IEND=NINT((1.0D0-SI)/DS)
c
c s+« DEFINE THE NUMBER OF INTEGRATION STEPS BETWEEN PRINTOUTS s+
c
FPRINT=1.0DO/ (DFLOAT (ESTEP)*DS)
CALL LINTRP(SI,X,V,SPLE,¥,VI,VID,IER)
IF(IER.EQ.1) THEN
WRITE(3,71) SI
71 FORMAT(’ IE AUGLYR LINTRP RETURNED WITE AN ERROR FLAG’,/,
2 » X HAD THE VALUE’,F10.6,’ OF ENTRY?)
STOP
END IF
c
c »++ CHECK FOR STAGNATION POINT, AND SET INITIAL VALUES s#=
c #*+ ACCORDINGLY s
c

IF(STAG) THEN
IF(DUMP) WRITE(3,3)

3 FORMAT(10X,’ STAGNATION POINT ’)
H32=1.61998D0
D2=0.29004D0/DSQRT (R+VID)

D3=H32D2
ELSE
IF(DUMP) WRITE(3,5)

5 FORMAT(10X,’ O STAGNATION POINT )
H32%1.57258
D2=0.66411+DSQRT(SI/(ReVI))
D3=H32+D2

END IF
IF(DUNP) THER
WRITE(3,6) R,H32,D2,D3,SI,VI
6 FORMAT(/,10X,’ REYNOLDS NUMBER = ’,E10.4,//,10X,

: > INITIAL VALUES’,//,10X,” H32 = ' E10.4,/,10X,
x > MOMENTUM THICKNESS = *,E10.4,/,10X,
2 » ENERGY THICKNESS = ’,E10.4,/,10,’> ABSCISSA = °,
: E10.4,/,10X,’ VELOCITY = ’,E10.4,/)
WRITE(3,7)
7 FORMAT(? X VELOCITY®)
DO 9 I=1,N
WRITE(3,8) x(I),V(I)
8 FORMAT(2F10.4)
9 CONTINUE
EED IF
RD2=ReVI+D2
c
c *ss COMPUTE INITIAL LAMINAR SKIN FRICTION #+=
c

CALL FAPP(H32,H12,EPS,D,KAPS)
CFL=EPS/RD2
CD=2 .0DO*CFL#VI*VI
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D1=H12#D2
IF(DUMP) WRITE(3,10)

FORMAT(//,7X,7X?,11X, *§32°,10X,’D1,11X,°D2’,11X,’D3’,11X, °CD*, /)
DUM=0.058D0

IF(DUMP) WRITE(3,20) SI,H32,D1,D2,D3,CD,DUN

FORMAT(7E11.4)

s+ INITIALIZE PARAMETERS FOR THE INTEGRATION LOOP »#x

LMER=. TRUE.
SEP=.FALSE.
§=51
Y(1)=D2
Y(2)=D3
RMARGE=1.0DO
R2=0.058D0
R3=R2

R4=R2
R5=R2
R6=R2

NE=2
TOL=0.001D0
IND=1

=0

««s ENTER THE INTEGRATION LOOP #»=

DO 50 I=1,IEND
K=K+1
$=5+DS

s++ INTEGRATE EITHER THE LAMINAR OR TURBULENT BOUBDARY LAYER #»+
«s+« EQUATIONS DEPENDING ON THE VALUE OF LMER USIKG RK2 hadd

IF(LMER) TEER
CALL RK2(NE,FCIEL,SI,Y,S)
ELSE
CALL RK2(NE,FCHET,SI,Y,S)
EED IF
D2=Y(1)
D3=Y(2)
H32=D3/D2
CALL LINTRP(S,X,V,SPLN,N,VS,VSD,IER)
IF(IER.EG.1) THEN
WRITE(3,72) S
FORMAT(’ IE AUGLYR LINTRP RETURENED WITH AN ERROR FLAG’,/,

3 > X BAD THE VALUE’,F10.6,°> OF ENTRY’)

STOP
END IF
RD2=R+VS+D2

#+* JF STILL LAMINAR, CHECK FOR TRANSITION »»»

IF(LMNR) THEX
IF((H32-(DLOG(RD2)+46.78D0)/34.2D0) .LE.0.0) THEKN
STRANS=S
LMER= FALSE.
EED IF
END IF
IF(LMER) THEX
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c s+ CEECK FOR LAMINAR SEPARATION IGNORE SEPARATION WEICH IS »#«
c ss+ PREDICTED DUE TO NOISY VELOCITY DISTRIBUTION BEFORE NOSE »+e
c

IF(§32.LT.1.51509.4¥D.S.GT.0.7) GOTO 70
c
c #se COMPUTE LAMINAR SKIN FRICTION ##+
c

CALL FAPP(E32,H12,EPS,D,KAPS)

CFL=EPS/RD2

CF=2.0DO#CFL#VS#VS

ELSE

c
c we+ CHECK FOR TURBULENT SEPARATION ses
c

IF(832.LT.1.5) GOTO 70
c
¢ ses COMPUTE TURBULEHT SKIN FRICTION s*»
c

H12=F1(H32)
CFT=WSHR(H12,RD2)
CF=2.0DO*CFT
END IF
D1=H124D2
IF(K.EQ.NPRINT.AND.DUMP) WRITE(3,20) S,B32,D1,D2,D3,CF,RMARGN
IF(K.EQ.¥PRINT) K=0
50 CONTINUE
SCRIT=1.0D0O
IF(LMBR) THES
IF(DUMP) WRITE(3,60)

60 FORMAT(//,10X,’ LAMINAR TEROUGHOUT’,/10X,’ ¥O SEPARATION’)

ELSE

IF(DUMP) WRITE(3,65) STRAES

65 FORMAT(//,10X,’ TRANSITION AT S = ’,F8.4,

1 /,10X,’> MO SEPARATION’)

EXD IF

GOTO 200
C
C «s» TF CONTROL IS PASSED TO LINE 70 SEPARATION HAS OCCURRED AND Ladd
c #=++ THE INTEGRATION IS SUSPERDED AT THE POINT OF SEPARATION. sex
C

70  SEP=.TRUE.
SCRIT=S
IF(LMER) THEN
CALL FAPP(H32,H12,EPS,D,KAPS)
CF=2.0DO*EPS/RD2#VS#VS
D1=H124D2
IF(DUMP) WRITE(3,20) S,H32,D1,D2,D3,CF,RMARGE
IF(DUMP) WRITE(3,80) S
80 FORMAT(//,10X,> LAMINAR SEPARATION AT S = ’,F8.4)
ELSE
H12=2.9999D0
CF=2.0+WSHR(H12,RD2)
D1=H12#D2
IF(DUMP) WRITE(3,20) S,H32,D1,D2,D3,CF,RMARGN
IF(DUMP) WRITE(3,90) STRANS,S

920 FORMAT(//,10X,’ TRANSITION AT § = ’,F8.4,
4 /,10X,’ TURBULENT SEPARATION AT S = ’,F8.4)
END IF
GOTO 200

200  RETURN

END
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SUBROUTINE BODGEN(XJ,XLIP,THLIP,NJS,HJF,NS,NF)
C
CHESSERERABRIIXBRERUARRASERE RS RABRRER SRS RAS RSB SS SRR AR RS RS AAIARS SR RSN ARRRE RS

THIS SUBROUTINE GENERATES AN AUGMENTOR BODY WITH VARIABLE PARAMETERS BOZZLE
LOCATION, LIP ROTATION POINT, LIP ROTATION ANGLE, AND MIXING CHAMBER HEIGHT.
OF INPUT ALL GEOMETRIC PARAMETERS ARE NORMALIZED BY THE BODY LENGTH.

**% PARAMETER DESCRIPTION *»»

INPUT:
XJ ~ JET NOZZLE POSITION DIVIDED BY TBE BODY LENGTH
XLIP - LIP ROTATION POINT DIVIDED BY THE BODY LENGTH
THLIP - LIP ROTATION ANGLE IN RADIAES

NJS - PANEL INDEX OF JET START
RJF - PANEL INDEX OF JET FINISH
§s ~ PABEL INDEX OF BODY NOSE START
§F - PANEL INDEX OF BODY KOSE FINISH

OUTPUT IS PROVIDED IN TEE FORM OF DATA FILES. BODY.DAT CONTAINS THE
SURFACE COORDINATE PAIRS AS WELL AS THE TRANSPIRATION VELOCITY OVER EACH
PANEL.

o000 a000000a0

*
-
*
*
*
»
=
L 4
L 3
*
*
OUTPUT: +
®
E 3
*
*
*
*x
*
*
*
*

Lo T T P P T T PP
c

IMPLICIT REAL+8(A-H,0-2)

DIMENSION XP(20) ,XTEMP(150) ,YTEMP(150) ,VNTEMP(150)

DIMENSION XEOSE(25),YNOSE(25),XSPLE(100),YSPLE(100),SPLN(100,3)

LOGICAL FLAG

REWIED 1

REWIND 2

PI=3.1415926

5 FORMAT(3F10.5)
c
THETA=THLIP/180.0DO*PI
c
c #*s» DEFINE JET BOUNDARY SLOPE TO BE 12 DEG ##=
C
SLOPE=DTAN(12.0D0/180.0D0*PI)
c
[
C *#ss COMPUTE THE CONTROL STATION LOCATION #ss
C
XCOXT=XJ+0.7D0O/SLOPE
C
RE=0.5D0
C
C *+* JF THE LIP ROTATION POINT IS LESS THAN THE NOSE RADIUS, SET ##=
C s++ THE LIP ROTATION POINT EQUAL TO THE NOSE RADIUS IN ORDER TO s#=
C sss AVOID A CONTORTED BODY SHAPE #s»
C
IF(XLIP.LT.RE) XLIP=RN
C
C +++ CHECK TO INSURE THAT THE CONTROL STATION IS BEHIND THE LIP s#+¢
Cc s++ ROTATION POINT, IF BOT PRINT ERROR MESSAGE AND SUSPEND Ly
[ =»» EXECUTION e
C

IF(XLIP.GT.XCONT) THEN
WRITE(3,10) XJ,XLIP,THLIP
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10

Q

[}

aaoaa

50
60

~
(=]

oo aaoa0

FORMAT(’ IN BODGEN XLIP WAS GREATER THAN XCONT. PARAMETERS’,
’ 0§ ENTRY WERE’,/,’ XJ =’,F8.4,> ILIP =’,F8.4,
'TELIP =’,F8.4)

STOP

END IF

ssx DEFINE EXTREMITIES OF THE SYMMETRY PLANES »#x

X1=-20.
IM=26.

#¢+ TRITIALIZE PARAMETERS ##*

FLAG=.TRUE.
DIST=XJ]-I1

II

=.06

XIM1=0.

DO

#»s% GENERATE A STRING OF COORDINATES WHICH HAVE A RATIO OF ##=
#xx SUCCESSIVE LENGTHS EQUAL TO 1.5 ###

50 I=1,20

IP(I)=XI
XI=2.5#XI-1.5¢XIN1
YIM1=XP(1)
IF(XIN1.GT.DIST) GOTO 60

CONTINUE
=1

Y=0.
J=0,

DO

70 I=1,8
X=XJ-XP(N-I+1)
JuJ+l
XTEMP(J)=X
YTEMP(J) =Y
VRTEMP(J) =V}

CONTINUE

#*+ GENERATE A SET OF COORDINATES FOR THE JET BOUNDARY WEICH HAS THE #»»
#+» FOLLOWING PROPERTIES: PAREL LENGTHS INCREASE IN A RATIO OF 1.5 AS#»s
+»++ ONE TRAVERSES AWAY FROM THE JET NOZZLE, AND AS ONE TRAVERSES AWAY#**#

»s» FROM THE CONTROL STATION MOVIEG TOWARDS THE NOZZLE. THE e

#»+ INCREASING PANEL LENGTH IS HALTED WEEN THE LENGTH IS (21

#»+« APPROXIMATELY 0.3. THE MIDDLE SECTION OF THE JET BOUNDARY HAS e

#*+ CONSTANT I INCREMERT OF 0.2851. hdhdd
DX=0.2851D0

DO 80 I=1,16

VE=.154DSQRT(1./(X~XJ+0.1))+.2
J=l+1

IF(I.EQ.1) TEEN

HJs=]
X=XJ
Y=0.0DO
EED IF
IF(1.LT.X.AND.I.LE.6) THEW
X=XJ+XP(I-1)
Y=SLOPE+ (X-XJ)
EED IF

IF(6.LT.X1.AND.I.LE.13) TEEN
I=X+DX
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Qoo

100

150
C
C
C

Y=SLOPE+ (X-XJ)
ERD IF
IF(13.LT.I.AND.I.LE.18) THEN
I=XCOBT~XP(17-1)
Y=SLOPE*(X-XJ)
END IF
XTEMP(J) =X
YTEMP(J) =Y
VETEMP(J)=VE
COBTINUVE
BIF=]

*»+ GENERATE THE POINTS WHICH DEFINE THE CONTROL STATION *#s+

X=XCONT

Y=SLOPE*(X-XJ)

R=.5#(1.-Y)

YC=Y+R

DANG=PI/8.

ANG=-PI/2.

DO 100 I=1,8
VE=DCOS (ANG+DANG/2.)
J=1+1
XTEMP(J) =X
YTEMP(J) =Y
VETEMP(J) =VE
ABG=ANG+DAKRG
X=XCONT+R*DCOS ( ANG)
Y=YC+R*DSIN( ANG)

CONTINUE

*«x» GENERATE NOSE POIETS AED STORE »#»

XS=RE*(1.-DSIK(TRETA))
X=X§
Y=1.+DTAN(THETA) * (XLIP-X)
XC=X+RN*DSIN(THETA)
YC=Y+RE*DCOS (THETA)
DEL=0.0
IF(DABS(DSIN(THETA)).GT.1.E-3)
&  DEL=2.0DO#RE+(DTAB(THETA)-(1.0DO-DCOS(THETA))/DSIN(THETA))
ANG=PI
¥RN=NINT(RN*PI1/0.15D0)
DANG=PI/DFLOAT(NRN)
NCIR=NRE+1
DO 150 I=1 ,NCIR
XNOSE(I)=X
YNOSE(I) =Y
ANG=ANG-DANG
XCI=RE*DCOS (ANG)
ETA=RN*DSIN(ABG)
XIMi=X
X=XC+ICI*DCOS(PI/2.-THETA) ~ETA*DSIN(PI/2.~-THETA)
XTHP=X
Y=YC+ICI+DSIN(P1/2.-THETA) +ETA*DCOS(PI/2.-THETA)
CONTINUE

s SPLINE FIT THE SECTIOR BETWEEN THE CONTROL STATION AND NOSE s#s

DO 105 I=1,3
XSPLE(I)=XNOSE(4-I)
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105

107

109

aaoaoa

120

YSPLE(I)=YNOSE(4-I)
CONTINUE
XSPL¥(4)=XLIP
YSPLE(4)=1.0DO0
DO 107 I=1,3
XSPLE(4+I)=XCONT-XP(4-1)
YSPLE(4+1)=1.0DO
CONTINUE
NSPL=7
NFSPL=6
CALL ICSCCU(XSPLE,YSPLN,NSPL,SPLN,100,IER)
IF(IER.EQ.129.0R.IER.EQ.130.0R.IER.EQ.130) THEE
WRITE(3,109) IER
FORMAT(? IN BODGEN ICSCCU RETURNED WITE THE ERROR VALUE ’,IS)
STOP
ENED IF

s** GENERATE POINTS BETWEEF THE CONTROL STATION ARND HOSE USIEG THE »=»»
*+* SPLINE FIT

%
X=XCONT
¥=1.
V§=0.0
J=i#1
XTEMP(J)=X
YTEMP(J)=Y
D0 110 I=1,3
J=J+1
X=XCONT-XP(I)
XTEMP(J) =X
CALL INTRP(X,XSPLE,YSPLN,NSPL,SPLE,100,Y,YD,YDD,IER)
YTEMP(J) =Y
VNTEMP(J) =VE
CONTINUE
DX=0.15D0
IEED=NINT((I-XS)/DX)
DX=(X-XS)/DFLOAT(IEED}
XN=RN+DCOS(THETA)
FLAG=. TRUE.
L=0
DO 120 I=1,IEND-1
J=1+1
X=X-DX
XTEMP(J) =X
CALL INTRP(X,XSPLEN,YSPLN,ESPL,SPLN,100,Y,YD,YDD,IER)
YTEMP(J) =Y
VETEMP(J)=VE
IF(X.LE.XLIP) THER
LaL+1
IF(L.EQ.1) THEN
¥S=J-1
FLAG=.FALSE.
ERD IF
EXD IF
CONTINUE

s+» GENERATE THE NOISE POINTS USING THE STORED DATA *#=

X=X5
DO 151 I=1,ECIR
IF(FLAG.AND.I.EQ.1) NS=)
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151

157

160

170
220

240

J=J+1

XTEMP(J)) =XROSE(I)

YTENP(J) =YBOSE(I)

VETENP(J) =VN
CONTINUE

#s» GENERATE POINTS FROM NOSE TO INFIEITY s*=

DO 155 I=1,2
XSPLE(I)=XBOSE(NCIR-2+I)
YSPLN(I)=YBOSE(NCIR-2+I)
CONTINUE
Y=(1.+2.+RN) +DTAN(TEETA)* (XLIP+DEL-XTMP)
XSPLN(3)=ITMP
YSPLE(3)=Y
XSPLN(4)=XLIP+DEL
YSPLN(4)=1.0D0+2.0D0*RE
DO 157 I=1,3
YSPLE(I+4)=1.0D0+2.0DO*RY
CONTINUE
CALL ICSCCU(XSPLE,YSPLN,NSPL,SPLN,100,IER)
IF(IER.EQG.129.0R.IER.EQ.130.0R.IER.EQ.130) TEEXN
WRITE(3,109) IER
STOP
END IF
II=XTMP
L=0
DO 170 I=1,80
I=XI
J=J+1
IF(X.LT.XCONT-.1) TEEX

CALL INTRP(X,ISPLN,YSPLN,NSPL,SPLK,100,Y,YD,YDD,IER)

ELSE
Y=1.0DO+2.0DO*RN
END IF
IF(X.GT.(XLIP+DEL)) THEN
L=L+1
IF(L.EQ.1) NF=J
END IF
ITEMP(J)=X
YTEMP(J) =Y
VETEMP(J) =V}
XI=2.2+XI-1.2+XIM1
XIM1=X
IF(XI.GT.XX) GOTO 220
CONTINUE
EMAX=]

DO 240 I=1,NMAX
WRITE'1,5) XTEMP(I),YTEMP(I),VETEMP(I)
CONTIBUE

RETURN
END
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SUBROUTINE CHANEL(R,XEXIT,XBEGIN,XDIF,DIFSLP,DUMP1,

1 PEXIT,DFDRAG)

C

[ Y T Y T e L e P P I T
Cc -
c SUBROUTINE CBANEL MARCHES THE JET EQUATIONS FROM THE STATION AT WHICH *
C THE OUTER VELOCITY HAS BECOME CONSTANT TO TEE SHROUD EXIT. THE INITIAL *
C CONDITIONS FOR THE TIME MARCH ARE PASSED VIA COMMON BLOCK FROM SUBROUTIRE *
C JET. SINCE THERE ARE NOV FOUR UNKNOWN QUANTITIES, THE INITIAL COEDITION *
C VECTOR IS EXTEEDED TO 4 ELEMENTS BY INCLUDING AN INITIAL VALUE FOR UOC OF 1.0 »
C -
C  ss» LATEST REVISION - 25 JAN 1987 »xs -
C =
[ #++ PARAMETER DESCRIPTION ##+# -
[ -
[of IEPUT: -
C R - JET PARAMETERS: UO, Ui, P, B, DRAG =
C XEXIT - X COCRDINATE OF THE SEROUD EXIT -
C XBEGIN - X COORDIBATE TO START THE MARCHIEG -
C XDIF = X COORDINATE OF THE DIFFUSER START «
C DIFSLP - DIFFUSER SLOPE *
C DUMPT - LOGICAL VARIABLE TO CONTROL OUTPUT -
(o} *
c OUTPUT: *
C PEXIT - PRESSURE AT THE SHROUD EXIT AS COMPUTED BY THE VISCOUS SOLUTION *
C DFDRAG - PRESSURE DRAG ASSOCIATED WITH THE DIFFUSER *
C R ~ VECTOR CONTAINING THE JET PARAMETERS AT THE SHROUD EXIT =
Cc *
[ T Y T Y I

C
IMPLICIT REAL#*8(A-H,0-2)
LOGICAL DUMP1
DIMENSION C(24),W(5,9),R(5),RD(5)
COMMON /DIF/ XD,DS
EXTERBAL FCN2

XD=XDIF
DS=DIFSLP

PI=3.14159265D0
ALP=DL0G(2.0DO)
M=5

MW=5

TOL=1.D-3

IND=1

Uo=R(1)

Ui=R(2)

P= R(3)

B= R(4)

H=1.0DO

PSTART=P

HSTART=H

ETAH=DSQRT(ALP)*E/B
RMDOT1=B/SQRT(ALP) » (ETAH+UO+DSQRT(PI)/2.0D0sDERF(ETAH) *U1)
RMJ1=B/SQRT(ALP)#* (UO##2+ETAH+DSQRT(PI)»UOs«U1sDERF(ETAH) +

1 0.5DO*DSQRT(PI/2.0D0)*U1++2+DERF(DSQRT(2.0DO) *»ETAR)) +
2 P+H

C *++ PRINT HEADERS =»=
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50

[

55
1

(o]

60

Q

70

IF(DUMP1) THEN

REWIND(12)
WRITE(12,50) RMJ1,RMDOT1

FORMAT(/,25X,° JET IN CHANNEL SOLUTIOE ’,/,
> INITIAL JET MOMENTUM = ’,F10.5,’ INITIAL MASS = ’,

F10.5)
WRITE(12,55)
FORMAT(/,? I U0,U0D0T
’ B,BDOT?)
END IF

DX=0.25D0
DIST=XEXIT-XBEGIN
NPTS=NINT(DIST/DX)
DX=DIST/DFLOAT(EPTS)
I=XBEGIN

#*+ MARCE THE VISCOUS SOLUTION *#*»

DO I=1,¥PTS
XEND=X+DX

U1,U1DOT P,PDOT’,

CALL DVERK(M,FCN2,X,R,XEED,TOL,IKD,C,MW,W, IER)

IF(DUMP1) THER
CALL FCH2(M,X,R,RD)

WRITE(12,60) X,(R(J),J=1,4),X,(RD(J),J=1,4)

FORMAT(SF11.5,/,5F11.5,/)
END IF

END DO
s DEFINE THE EXIT PRESSURE #=»#

P=R(3)
B=HSTART+(X-XDIF)*DIFSLP
PEXIT=P

DFDRAG=R(5)- (P-PSTART) *HSTART

Uo=R(1)
U1=R(2)
B= R(4)
ETAB=DSQRT(ALP)*H/B

RMDOT=B/SQRT(ALP)» (ETAH#UO+DSQRT(PI)/2.0DO*DERF(ETAR) »U1)
RM3=B/SQRT(ALP) *(UO#2+ETAH+DSQRT(PI) *UO+U1+DERF(ETAR) +
1 0.5D0*DSQRT(PI/2.0DO0) *U1+#2*DERF(DSQRT(2.0DO) #+ETAH) ) +

2 P+HESTART+DFDRAG

IF(DUMP1) THEN

WRITE(12,70) RMJ,RMDOT

FORMAT(’ FINAL MOMENTUM = ’,F10.5,
END IF

RETURN
END

)

FINAL MASS = ’,F10.5)
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SUBROUTINE FAPP(H32,H12,EPS,D,KAPS)
C
[ T e PP PR T e L

THIS SUBROUTINE COMPUTES THE LOCAL SKIN FRICTION COEFFICIENT (EPS), AND
THE LOCAL DISSIPATION COEFFICIENT (D) FOR THE LAMINAR BOUNDARY EQUATIONS.

¢+ PARAMETER DESCRIPTION »s#

INPUT:
H32 - SHAPE FACTOR
H12 -~ SHAPE FACTOR

QUTPUT:
EPS - LOCAL SKIN FRICTION COEFFICIENT
D - LOCAL DISSIPATIOR COEFFICIENT
KAPS - LAMINAR SEPARATION PARAMETER. KAPS=1 FOR ATTACEED FLOW AND
KAPS=0 FOR SEPARATED FLOW

o000 a000aa000
BB R R R R R RN RN

CRERRRRSAREEERBSRRAEREN RS R RS RRF RS ERE S SRS RS RARTRERRARERS SRR AR S AS S ERRRRERS
C
IMPLICIT REAL+8(4-E,0-Z)
KAPS=1
D=7.853976D0-10.260551D0+H32+3. 418898+H32+H32
IF(H32-1.51509D0)10,20,30
10 KAPS=0
RETURKE
20 H12=4.02922D0~-(583.60182D0-724.55916D0+H32+227.1822D0
[ 4 +H32+H32)+DSQRT(H32-1.51509D0)
EPS=2.512589D0-1.686095D0+H12+0.391541+H12+H12~0.031729+H12+#3.D0
RETURN
30 1F(H32-1.57258D0)21,21,40
21 GOTO 20
40 H12=79.870845D0-89.582142D0+H32+25.715786D0sH32+H32
EPS=1.372391-4.226253«H132+2.221687+H32+H32
RETURE
END
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SUBROUTINE FCN1(N,X,S,SD)
C
[ T L L L P P PR A

THIS SUBROUTINE COMPUTES THE DERIVATIVES OF THE JET PARAMETERS FOR USE
IN MARCHIEG OF THE VISCOUS SOLUTION WITHIN THE VISCOUS-INVISCID INTERACTION
REGION. THE DERIVATIVE OF UO IS FOUND FROM THE IRVISCID SOLUTICHE VIA A&
LINEAR SPLIRE FIT.

s+» LATEST REVISION: - 24 JAN 1987 #*»
s** PARAMETER DESCRIPTIDN ##+

INPUT:
¥ - NUMBER OF DIFFERENTIAL EQUATIONS IN THE SYSTEN,
X -~ CARTESIAN COORDINATE
S - VECTOR CONTAIKING THE VALUES OF UO, Ui, P AND B AT THE STATION X
SD - VECTOR CONTAINING THE DERIVATIVE VALUES OF UO, Ui, P AED B AT THE
STATION X

anoaaooaoacoaoaacagaoaoaaaoaan
@ % BB BB R R R RRRRRRN

o L T T T T T T T T TP T P PP T T PP P PP P
Cc

IMPLICIT REAL*8(A-H,0-2)

DIMENSION S(4),SD(4),C(2,2),WK(2,2),RES(2)

COMMON /AREA1/ XE(50),UE(50),SPL(50,3),K]

#»» FIND THE DERIVATIVE OF UO THROUGH INTERPOLATICE OF THE s#=
#+= SPLINE FIT *ax

aagaaoa

CALL INTRP(X,XE,UE,¥J,SPL,50,U0,UODOT,D2,IER)
IF(IER.NE.O) THEX
WRITE(3,10) X
10 FORMAT(® IN FCE1 INTRP RETURBED WITH AN ERROR FLAG’,/,
3 > X HAD THE VALUE’,F10.6,’ OF ENTRY’)
STOP
EED IF

»s» COMPUTE THE DERIVATIVES OF THE PARAMETERS UO, Ui, B, AND P #»%

Q

SQRT2=DSQRT(2.0DO)
ALPEA=DSQRT(DL0OG(2.0DO))
RK=0.0283

Uo=s(1)
U1=5(2)
P =5(3)
B =5(4)

C(1,1)=U0+SQRT2+U1
C(1,2)=U1/B+(U0+SQRT2/2.0D0+U1)
C(2,1)=SQRT2#U0#+2+3,0DO* U0+ U1+DSQRT (1.5D0) sUi»*2
C(2,2)=U1/B*(SQRT2*U0*#%2+1 . 5D0O*UO*U1+

1 DSQRT(2.0DO/3.0D0)/2.0DO*U1+»2)
D1=2.0DOsU1
D2=U1+(2.0DO*SQRT2+U0+1 .5D0«U1)
T1=0.0DO
T2=-RK+(ALPHA*#2)*(U1#+3) /B
RHS (1) =T1-D1+UODOT
RHS (2) =T2-D2+UODOT

CALL SIMG(C,WK,RES,2,2,IER)
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SD(1)=U0DOT
SD(2)=RES(1)
SD(3)=-U0+UoD0T
SD(4)=RES(2)

RETURN
EXD
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SUBROUTINE FCE2(N,X,R,RD)

C
CHEARRXBAAEBAR A AA RS SR A AR B IS KBRR RS A RIS SR EREP SRR RN LA KRR XX AR A TSRS KRR R

THIS SUBROUTINE COMPUTES THE DERIVATIVES OF THE JET PARAMETERS UC, U1,
B, AED P FOR USE IN MARCHIBG THE VISCOUS SOLUTION IN THE MIXING CHANEL,
DOWNSTREAM OF THE VISCOUS-INVISCID INTERACTICN ZONE.

#x* LATEST REVISION - 26 JAN 1987 s#=
*#++ PARAMETER DESCRIPTION #e+

INPUT:
¥ - NUMBER OF DIFFERENTIAL EQUATIONS
X - CARTESIAN COORDINATE
R - VECTOR CONTAINIEG THE VALUES OF UQ, Ui, P, B, AND DRAG AT THE STATIODN X=*
RD - VECTOR CONTAINING THE DERIVATIVE VALUES OF U0, Ui, P, B, AND DRAG *

AT TBE STATION X *
*

L 2ER R IEE JNE I B 25 25 R R R

aoaogaogoooo0aoo0o0o0a0a00aQ0

T T P T
o}

IMPLICIT REAL#*8(A-H,0-2)

DIMERSION R(5),RD(5),A(4,4),T(4),WK(4,4)

COMMON /DIF/ XDIF,DIFSLP

IF(X.GT.XDIF) THEN
H=1.0DO+(X-XDIF)*DIFSLP
BD=DIFSLP

ELSE
HD=0.0DO
H=1.0DO

EED IF

Uo=R(1)
U1=R(2)
P =R(3)
B= R(4)

CALL MATRIX(UO,U1,B,H,HD,A,T)
CALL SIMQ(A,WK,T,4,4,IER)

RD(1)=T(1)
RD(2)=T(2)
RD(3)=T(3)
RD(4)=T(4)
RD(5)=H*RD(3)

RETURN
END
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SUBROUTINE FCBL(NE,S,Y,YD)
C
[ R T L P T Y e T LT T

THIS SUBROUTINE COMPUTES TEE DERIVATIVES OF D2 AND D3 FOR THE LAMINAR
BOUNDARY LAYER EQUATIONS. A CALL TO SUBROUTINE FAPP IS NECESSARY.

#s¢ PARAMETER DESCRIPTION »s»

| 13
S SURFACE COORDINATE

Y VECTOR CONTAINING THE VALUES OF D2 ARD D3 AT THE STATION S

YD - VECTOR CONTAIBING THE DERIVATIVE VALUES OF D2 AND D3 AT THE STATION S

¢cNeEsEsNeEsEsEs NN N?]

*®
*
*
*
*
NUMBER OF DIFFERENTIAL EQUATIONS, IN THIS CASE 2 *
*
*
*
*
*

LT L L T T P T P P PP PP
Cc

IMPLICIT REAL#8(A-H,0-Z)

DIMENSION Y(NE),YD(EE)

COMMON /BLCVEL/ X(100),V(100),R

COMMON /BLCSPLE/ SPLN¥(100),X

D2=Y(1)
D3=Y(2)
H32=D3/D2
c
c #++ COMPUTE THE FRICTION AED DISSIPATION COEFFICIENTS ##s»
c
CALL FAPP(H32,H12,EPS,D,KAPS)
c
c s#¢ COMPUTE THE LOCAL SURFACE VELOCITY AND ITS DERIVATIVE #x=
c +++« FROM TEE LINEAR SPLINE FIT o
c
CALL LINTRP(S,X,V,SPLN,N,VS,VSD,IER)
IF(IER.EQ.1) THEN
WRITE(3,71) S
71 FORMAT(®> IN FCNL LINTRP RETURNED WITE A¥ ERROR FLAG’,/,
: » X BAD THE VALUE’,F10.6,’ ON EBTRY’)
STOP
END IF
RD2=ReVS#D2
CFL=EPS/RD2

YD(1)=-(2.0D0+H12)#D2/VS*VSD + CFL
YD(2)=-3.0D0*D3/VS*VSD + 2.0DO*D/RD2
RETURN

ERD
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SUBROUTIBE FCNT(NE,S,Y,YD)
C
CHEXREERRBEERER SRR AR RSB RARRRRRRR KA SRR R ERBSSR SIS R R ER R AR IR ABR AR R RARRR KRR KRS R R

THIS SUBROUTINE COMPUTES THE DERIVATIVES OF D2 AND D3 FOR USE IN THE
MARCHING OF THE TURBULEET BOUNDARY LAYER EQUATIONS.

s+ PARAMETER DESCRIPTION ##=

INPUT:
BE - FUMBER OF DIFFERENTIAL EQUATIONS, IN THIS CASE 2
S =~ SURFACE COORDINATE
Y VECTOR CONTAINING THE VALUES OF D2 AED D3 AT THE STATION S
YD - VECTOR CONTAINING THE DERIVATIVE VALUES OF D2 AEND D3 AT THE STATION S

aaoaaaoaogaoagaoaoaaaa
L IR I IR B BE _BE IR R Y I 2

T T LT T T T T
C

IMPLICIT REAL*8(A-H,0-Z)

DIMEESICY Y(NE),YD(KE)

COMMON /BLCVEL/ X(100),V(100),R

COMMON /BLCSPLE/ SPLE(100),X

C
c #»+ FUNCTION F1 RETURNS H12 GIVEN H32 ==
C
F1(H32)=832/(3.0D0*E32-4.0D0)
C
C +*+ FUNCTION WSHR RETURNS THE LOCAL TURBULENT SKIN FRICTION s¢=
C =s» COEFFICIENT, GIVEN THE SHAPE FACTOR H12, AND THE REYNOLDS »»«
C +«»+ NUMBER BASED ON MOMEETUM THICKNESS RD2 #*=
C
WSHR(H12,RD2)=0.0245D0# (1.0D0-2.0959D0*DLOG10(H12) ) »*1.705D0
4 /RD2#%0.268D0
c
C *«++ FUNCTION CDISS RETURNS THE LOCAL TURBULENT DISSIPATIDE ##x
[ ss% COEFFICIERT ##»
c
CDISS(H32,RD2)=(0.00481D0+0.0822D0*(H32-1.5D0) #+4.81D0)
& *(H32/RD3)#x(0.2317D0+H32-0.2664D0-0.87D5+(2.0D0~H32) #+20)
D2=Y(1)
D3=Y(2)
H32=D3/D2
H12=F1(H32)
c
C ses T0 AVOID SINGULARITIES AT SEPARATION, PUT BARRIERS OF »*+
C *s+ E32 AED H12 ss»
C
IF(H32.LT.1.5) H32=1.51
IF(H12.GT.3.0) H12=2.99
C
c #«* FIED THE LOCAL SURFACE VELOCITY AKD ITS DERIVATIVE THROUGE »#s=
C #s+ USE OF THE LINEAR SPLINE FIT sex
(o}
CALL LINTRP(S,X,V,SPLY,N,VS,VSD,IER)
IF(IER.EQ.1) THEN
WRITE(3,71) S
71 FORMAT(’ IE FCET LINTRP RETURBED WITH AN ERROR FLAG’,/,
& ’ X HAD THE VALUE’,F10.6,° ON ENTRY’)
STOP
END IF
RD2=RsVS#+D2

RD3=R#VS=*D3
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CT=WSHR(H12,RD2)

CD=CDISS(H32,RD3)
YD(1)=-(2.0DO+E12)+D2/VSsVSD + CT
YD(2)=~3.0D0*Y(2)/VS*VSD + 2.0DO0*CD
RETURN

END
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SUBROUTINE FRESTM(U10,BO,U0O,GAMMA, VD)

c
CEEESSRERRRSLLRER AR ER XXX RRRARAAEREERRBRER SRR RIRAB R AR RRRRARRARR RS A ER SRS

SUBROUTINE FRESTM COMPUTES THE FREE STREAM VELOCITY WHEN GIVEN THE
PARAMETER GAMMA AND THE PRIMARY JET PARAMETERS.

#+s LATEST REVISION - 23 APRIL 1987 #e»

#** PARAMETER DESCRIPTION s*=
INPUT:
u1o - INITIAL JET EXCESS VELOCITY
BO INITIAL JET HALF-WIDTH
uoo INITIAL JET EXTERNAL VELOCITY
GAMMA N0X-DIMENSIONAL FREE SPEED PARAMETER

vo FREE STREAM VELOCITY

oo ao0acaoo0a00a00
P 2K TR SR NN R R EE BE K R R 2K R B J

Crr s 4282243020 R R0 XS RN R RS R RERSERSFE AR S LR EBRRFERE RS R A R XA B AR XSRS S ES R AR A RN AR S

C
IMPLICIT REAL*8(A-B,0-2Z)

c
ALP=DL0G(2.0DO)
PI=3.1415926D0
C
c s+*+ COMPUTE THE PRIMARY JET MOMENTUM FLUIX. Lbdd
c
RMI=DSQRT(PI/ALP) *U0CO*U10%B0+0.5D0*DSQRT(PI/2.0D0/ALP) U10*#*2#BO
C
C **% COMPUTE THE FREE STREAM VELOCITY LR
C
VO=GAMMA+DSQRT(RMI/2.0DO)
c

RETURN
EED
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SUBROUTINE GETPRM(XJ,XLIP,THLIP,XEXIT,IDIF,DIFSLP,GAMMA,U10,DUMPY,
1 BLAYER, RE)
c

[ T T L R L L L L T T T T P
GETPRM READS PARAMETER VALUES FROM A DATA FILE WHICH IS ASSIGHNED UNIT 4
ss+ LATEST REVISION - 22 APR 1987 #s»

*#++ PARAMETER DESCRIPTION »#=
OUTPUT:
XJ = X COORDINATE OF THE JET NOZZLE
ILIP X COORDINATE OF THE SBROUD LIP
TELIP - SHROUD LIP ROTATIOE ANGLE (IN DEGREES)
XEXIT - X COORDINATE OF TBE SHROUD EXIT
IDIF - X COORDINATE OF THE DIFFUSER START
DIFSLP - DIFFUSER SLOPE
GAMMA - FREE-STREAM SPEED PARAMETER
uio - JET INITIAL VELOCITY
DUMP1 - OUTPUT CONTROL
BLAYER - BOUNDARY LAYER COMPUTATION CONTROL PARAMETER
RE - REYBOLDS NUMBER BASED ON JET THRUST

aaocaoaacgoaaaoooa0o0aaa0a0a000000
LR AN B IR BRI N BN IR BE NN R R B 2R B BN

[ L g T T T T T F T
[

IMPLICIT REAL*8(A-H,0-2)

LOGICAL DUMP1,BLAYER

READ(4,*) XJ
READ(4,*) XLIP
READ(4,*) TELIP
READ(4,*) IEIIT
READ(4,*) XDIF
READ(4,*) DIFSLP
READ(4,*) GAMMA
READ(4,*) U10
READ(4,*) DUMP1
READ(4,*) BLAYER
READ(4,%) RE

RETURS
EXD
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SUBROUTINE JET(NJS,NJF,XJET,YJET,UJET,VJET,1JET,U10,B0,VL ¥,
1 DUMP1,NCALL,XEND,R,RES)
[
CHRRRRER SRR EE SRS ERRERRAIRARBRERRRA SRS SRR R ERERRA RS SRS F R RS AR RR BB RRERE SR

C -
C SUBROUTINE JET PERFORMS THE VISCOUS CALCULATION WITHIN THE VISCOUS- -
C INVISCID INTERACTION REGION. THE DERIVATIVE OF UO IS FOUED FROM THE *
C INVISCID SOLUTION VIA A QUASI-HERMITE SPLINE FIT, AED IS USED AS A FORCING =
C TERM I¥ THE VISCOUS SOLUTIOCN. *
C *
C ss» LATEST REVISION - 23 APR 1987 ##x *
C *
C ss» PARAMETER DESCRIPTION #s+ *
C »
C INPUT: *
C KJS - PANEL INDEX OF JET BOUNDARY START *
C HNJF - PANEL INDEX OF JET BOUNDARY FINISE .
C XJET - VECTOR OF X COORDINATES ALONG THE JET BOUNDARY *
C YJET - VECTOR OF Y COORDINATES ALONG THE JET BOUNDARY *
C UJET - VECTOR OF HORIZONTAL VELOCITY ALONG THE JET BOUNDARY *
C VJET - VECTOR OF VERTICAL VELOCITY ALOBG THE JET BOUNDARY *
C NJET - NUMBER OF POINTS ALONG THE JET BOUNDARY *
C U10 - JET IBITIAL CENTERLINE VELOCITY *
C BO - JET INITIAL VELOCITY HALF-WIDTE *
cC V§ - VECTOR CONTAINING THE BORMAL VELOCITIES TO THE PABELS ALONG THE JET =
[ BOUNDARY IN THE VISCOUS-INVISCID IBTERACTION REGION *
cC ¥ - NUMBER OF PANELS -
C ©L..:P1 -LOGICAL VARIABLE FOR OUTPUT COBTROL *
C NCALL ~INDEXI TO KEEP TRACK OF THE SUCCESSIVE CALLS TO JET *
Cc *
C OUTPUT: *
c Vi - UPDATED NORMAL VELOCITY VECTOR *
C XEND - X STATION AT WHICE THE VISCOUS-INVISCID MATCHING ENDS *
C R - VECTOR CONTAINIBG THE VALUES OF TEE JET PARAMETERS AT THE ERD OF *
Cc THE VISCOUS-IEVISCID MATCHING REGIOX *
C RES - MAXIMUM RESIDUAL IN THE VISCOUS-INVISCID MATCHIENG *
[ *
[ e P Y S R P e e eI P e

C
IMPLICIT REAL*8(A-H,0-2)
LOGICAL DUMP1
DIMENSION XJET(NJET),YJET(NJET) ,UJET(NJET),VIET(RJET),VE(N),
1 ¥(4,9),c(24),5(4),SD(4),SPLN(50,3) ,R(5)
DIMENSION XTMP(300),YTMP(300)
COMMOB /AREA1/ XE(S50),UE(50),SPL(50,3),1]
EXTERNAL FCEN1

C
PI=3.141592D0
ALP=DLDG(2.0DO)
M=4
M=4
TOL=1.D-4
IND=1
C
C #ss PRINIT HEADERS s»#
C
IF(DUMP1) THEN
REWIND 9
REWIND 10
WRITE(9,45)

45 FORMAT(/,25X, ’> JET VELOCITIES ’)
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WRITE(9, 40)
40 FORMAT(/,* X Y uIEv VIRV vvIS?,
: ’ VEOLD VENEW RES')
WRITE(10,50)
50 FORMAT(/,25X,’ JET SOLUTION ?)
WRITE(10,55)
55 FORMAT(/,? I UO,UODOT U1,U1DOT P,PDOT?,
1 ’ B,BDOT’)
EED IF
c
c »++ SPLINE FIT TEE HORIZONTAL COMPONENT OF INVISCID VELOCITY s#s
c s« ALONG THE JET BOUNDARY .
c
CALL IQHSCU(XJET,UJET,NJET,SPLN,50,IER)
IF(IER.NE.0) THEN
WRITE(3,90) IER
90 FORMAT(?AFTER CALL TO SPLINE IER HAS THE ERROR VALUE °,I5)
STOP
EXD IF
c
c s#+ DUPLICATE THE INVISCID VELOCITY DATA S0 THAT IT MAY BE s*x
c ss» SENT IN COMMOX e
c
¥J=RJET
DO I=1,NJET
XE(I)=XJET(I)
UE(I)=UJET(I)
SPL(I,1)=SPLE(I,1)
SPL(I,2)=SPLE(I,2)
SPL(I,3)=SPLI(I,3)
EXD DO
c
c *es DEFINE INITIAL VALUES OF THE JET PARAMETERS #4s
c sse 5(1)<--U0, S(2)<--U1, S(3)<--P, S(4)<--B  »##
c
U00=UJET(2)
P0O=0.0D0
c
$(1)=U00
$(2)=U10
$(3)=P0
$(4)=B0
c
RES=0.0
c
c e+« ENTER LOOP TO MARCH THE VISCOUS EQUATIONS
c
X=XJET(2)-.001D0
DO 10 J=2,NJET
XEND=XJET(J)
CALL DVERK(M,FCN1,I,S,XEED,TOL,IND,C,MV,¥,IER)
IF(IND.LT.0.0R.IER.GT.0) THEN
WRITE(3,150) IND,IER
150 FORMAT(/,’IN JET IND= »,I5,’ IER= ’,I5,/)
STOP
END IF
c
c s++ OBTAIN THE LOCAL DERIVATIVE VALUES OF THE JET PARAMETERS ##+
c

CALL FCN1i(M,XEND,S,SD)
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C *+» COMPUTE THE LOCAL INVISCID VELOCITY AND ITS DERIVATIVE »*#
C

CALL INTRP(XEND,XJET,UJET,BJET,SPLN,50,U0,UODOT,D2,IER)

IF(IER.EQ.1) THEN

WRITE(3,12) XEND
12 FORMAT(® I¥ JET INTRP RETURNED WITH AN ERROR FLAG’,/,
3 > X BAD THE VALUE’,F10.6,’ ON ENTRY’)
STOP

END IF
C
C =+ COMPUTE THE VERTICAL COMPONENT OF VELOCITY AT THE JET ##*+
C »»+ BOUEDARY FROM THE VISCOUS SOLUTICHN x e
[

VVIS=V(S,SD,YJET(J1))
[
C s+ COMPUTE THE LOCAL RESIDUAL BY COMPARING THE VISCOUS AND »#»
C s++ INVISCID VERTICAL COMPONENTS OF VELOCITY ALONG THE JET ##»*
C «+* BOUNDARY hx
C

RR=VVIS-VJET(J)

IF(DABS(RR) .GT.RES) RES=DABS(RR)
[
c «++ MAKE A CORRECTION TO THE LOCAL ENTRAINMEET VELOCITY ###
C

W1=1.0D0-0.7DO/DFLOAT(NJET-2)*DFLOAT(J-2)

JI=N]S-1+]

VEEW= VE(JJ)-Wi*RR
C

60

11

(o]

IF(DUMP1) THES
WRITE(9,60) XJET(J),YJET(J) ,UJET(J),VIET(J),VVIS,VN(i]),
VEEW,RR
FORMAT(8F10.5)
WRITE(10,65) XJET(J),S(1),5(2),5(3),5(4),
XJET(J),SD(1),SD(2),5D(3),5D(4)
FORMAT(5F10.5,/,5F10.5,/)
END IF

*++ MAKE FIRST PANEL SUCTION EQUAL TO THE SECOND TO ENHANCE s*»
s#*+ STABILITY L

IF(J.EQ.2) VE(NJS)=VEEW
VE(NJS-1+])=VEEW
CONTINUE

CONTINUE

REWIND 1

D0 I=1,%
READ(1,+) XTMP(I),YTMP(I)

EED DO

RENIND 1

DO I=1,%
WRITE(1,11) XTMP(I),YTMP(I),VE(I)
FORMAT(3F10.5)

EED DO

#s* INITIALIZE PARAMETERS FOR TEE CEANNEL SOLUTION ***
R(1)=5(1)

R(2)=5(2)
R(3)=5(3)
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R(4)=5(4)
R(5)=0.0D0

RETURN
EED
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SUBROUTINE JETCOF (MJS,BJF,XCP,YCP,ALPHA,D,IND1,IND2,PD,PE,PF,
1 PG,PH,PPI,C,VWORK,A,B, AMAT ,BMAT, ¥,
XJET, YJET,N3ET,AJET,BJET)
c
Ctl“‘“‘.“‘.“t“‘.t‘.“..‘““““l“““““.““““t““.“““‘““‘!“i

SUBROUTINE JETCOF COMPUTES THE IRFLUENCE COEFFICIENTS FOR TBE MATCHIEG
POINTS ALONG THE JET BOURDARY.

LATEST REVISION 23 APR 1987

#x+ PARAMETER DESCRIPTION »==»

IBPUT:
RJS - PANEL NUMBER OF THE BEGINEING OF THE JET BOUNDARY
BJF - PAREL NUMBER OF THE END OF THE JET BOUNDARY
XCP - VECTOR OF CONTROL POINT X COORDINATES
YCP - VECTOR OF COBTROL POINT Y COORDINATES
ALPHA - VECTOR CONTAINIRG THE SURFACE SLOPES
D - VECTOR CONTAINING TEE PANEL LENGTEHS

IEDt - VECTOR OF INDEX OF PANEL ADJOINING TO THE LEFT
IND2 - VECTOR OF INDEX OF PAREL ADJOINING TO THE RIGHT
PD..PPI~ SOURCE PARABOLIC FIT COEFFICIEENTS

[ - VECT"R OF SURFACE CURVATURE COEFFICIENTS
WORK - WORK SPACE VECTOR
A ~ WORK SPACE VECTOR
B - WORK SPACE VECTOR

AMAT - MATRIX OF X COMPONENT INDUCED VELOCITIES
BMAT - MATRIX OF Y COMPONERT INDUCED VELOCITIES
¥ - NUMBER OF PARELS

OUTPUT:
XJET - VECTOR OF X COORDIBATES OF TEE CONTROL POINTS ALOEG THE BOUNDARY
YJET - VECTOR OF Y COORDINATES OF THE CONTROL POINTS ALOEG THE BOUEDARY
BJET - NUMBER OF POINTS ALONG THE JET BOUNDARY
AJET - MATRIX OF U-VELOCITY INFLUENCE COEFFICIENTS FOR THE JET BOUNDARY
BJET - MATRIX OF V-VELOCITY INFLUENCE COEFFICIENTS FOR THE JET BOUNDARY

a0 O0000a00a0
B RO OB R OE R R E R RO R R R R R RRRE R RRRRR RN

L T T T T T R P P e P T
C
IMPLICIT REAL#8(A-H,0-Z)
DIMENSION XCP(E),YCP(N),ALPHA(E),D(X),PD(W),PE(N) ,PF(N),PG(D),
1 PH(N) ,PPI(N),C(N) ,IND1(N) ,IND2(N) ,WORK(8+E),A(N),B(N),
2 XJET(NJET) ,,YJET(NJET) ,AJET(NJET,N) ,BJET(MJET, D),
3 AMAT(N,N) ,BMAT(N, D)

#*+ CALCULATE AND STORE THE INFLUEECE COEFFICIENTS FOR TEE »s#*
s+ JET BOUNDARY b

aaOoOoaao

D0 I=NJS,HJF
II=I-1JS+1
I=XCP(I)
Y=YCP(I)
XJET(ID =X
YJET(ID) =Y

DO J=1,X
AJET(II, I)=AMAT(I,J)
BJET(II,J)=BMAT(I,J)
EED DO
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c
c ss+ COMPUTE THE VELOCITY AT A POINT SLIGHTLY ABOVE THE JET s
c »ss BOUNDARY VHEN NEAR THE COBTROL STATION TO AVOID THE SPIKE  *=x
c »ss IN THE VELOCITY FIELD CAUSED BY THE CURVATURE DISCONTINUITY »*#
c s#+ AT THE CONTROL STATION. e
c
IF(I.GT.(NIJF-5)) THEE
YNM=Y+(X-XCP(BJF-5))%0.15D0
CALL INFLCE(X,YM,XCP,YCP,ALPEA,D,IND1,I¥D2,PD,PE,
1 PF,PG,PH,PPI,C,WORK,N,A,B)
DO J=1,¥
AJET(II,1)=a(3)
END DO
END IF
c
END DO
c
RETURN

END
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SUBROUTINE JETVEL(AJET,BJET,NJET,Q,¥,V0,BETA,UJET,VIET,UOO,PATH)

a0

SRR EBIRAEBAR ISR RIE NS BSERBREREAERARB XS SRR R SR L ER R AR R RE RN B SRR RRE AR RS RS

SUBROUTINE VLCJET COMPUTES VALUES OF THE VELOCITY COMPONENTS AT THE
JET BOUNDARY

LATEST REVISION 23 APR 1986
»s+ PARAMETER DESCRIPTION #s##
IRPUT:
AJET -~ INFLUENCE COEFFICIENTS FOR U-VELOCITY ALONG TEE JET BOUNDARY

BJET - INFLUENCE COEFFICIENTS FOR V-VELOCITY ALONG THE JET BOUEDARY
NJET - NUMBER OF PANELS ALONG THE JET BOUNDARY

Q - VECTOR OF SOURCE STREBGTES
¥ - NUMBER OF PANELS
Vo - FREE STREAM SPEED

BETA - ANGLE OF ATTACK

OUTPUT:
UJET - VECTOR OF HORIZONTAL COMPOBENT OF VELOCITY ALOXG THE JET BOUNDARY
VIJET - VECTOR OF VERTICAL COMPONENT OF VELOCITY ALONG THE JET BOUNDARY
UoO0 - UO COMPONENT OF VELOCITY AT THE JET NOZZLE
PATM - UPSTREAM AMBIENT PRESSURE

noaconoaonoooo0aoaooa00000a00a
R OB R OR R R R E R REER R R RERRE R RN

T T T T T T P e S S L
[

IMPLICIT REAL#8(A-H,0-Z)

DIMENSION AJET(NJET,N),BJET(NJET,¥),Q(N) ,UJET(NJET) ,VIET(RJET)

C
C s*+ COMPUTE THE VELOCITY COMPONENTS ALOEG THE JET BOUEDARY Ladd
C
DO I=1,NJET
SUM1=0.0D0
SUM2=0.0DO
DO J=1,X
SUM1=SUM1+AJET(I,J)»Q(J)
SUM2=SUM2+BJET(I,J)*Q(J)
END DO
UJET(I)=VO+DCOS (BETA)+SUM1
VIET(I)=VO*DSIN(BETA) +SUM2
END DO
C
C *«*» CALCULATE TBE UPSTREAM ATMOSPEERIC PRESSURE bl
Cc
PATM=0.5D0* (UJET(2) ##2-V0+#+2)
(o}
UOO=UJET(2)
c
RETURN

END
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SUBROUTINE MATRIX(UO,Ui,B,H,HEDOT,A,T)
C
ol R T T T T e T T P T

SUBROUTINE MATRIX COMPUTES THE MATRIX ELEMENTS AID RIGHT EAND SIDE OF THE
EQUATIOES FOR THE DERIVATIVES OF THE JET PARAMETERS.

#»+ LATEST REVISION - 26 JAN 1987 #s»

s++¢ PARAMETER DESCRIPTION *++
INPUT:
uo - JET EXTERNAL VELOCITY
U1 JET CENTERLINE EXCESS VELOCITY
B - JET EXCESS VELOCITY BALF-WIDTH
H CEANNEL BALF-WIDTH
HDOT CHANNEL SLOPE

OUTPUT:
A - MATRIX ELEMENTS
T - RIGHT HAND SIDE VECTOR

FIEE TR R TR TEE Y IR JEE SR JEE JER N R R R I 2

SEB AR RSB BEERER VRS ERERESEABEESEEBR RS SRR RIS KRR R RAR BN RS IR BE R A SRR R R SRR R

o000 aO0O0O0O00O0000

IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(4,4),T(4)

ALP=DSQRT(DLOG(2.0D0))
PI=3.14159265D0

ETAE=ALP+H/B

ETAH2=ETAHs»2

ETAH3=ETAH#*s3

E1=DEXP(-ETAH2)
E2=DEXP(-2.0DOETAH2)
F1=DSQRT(PI)/2.0DO*DERF (ETAH)
F2=DSQRT(PI/2.0D0)/2.0DO*DERF(DSQRT(2.0DO0) #ETAR)
UH=UO+U1+E1

AUX1=U0-UE/2.0DO
AUX2=F1-ETAH*E1
AUX3=F2-ETAH+E2

AUX4=1.0DO~E1

AUX5=1.0D0~E2
AUX6=(2.0DO*AUX2-F1)*F1
AUX7=(1.0DO+ETAH2)*E1
RK=0.0283D0

C5=2.0DO*RK» (ALP#*»2)*(U1%+2)/B

4(1,1) =AUX1+ETAB+U1#F1
A(1,2)=AUX1*F1+U1sF2
A(1,3)=0.5DO+ETAH
4(1,4)=(U1/B)» (AUX1#AUX2+0.5DOs U1« AUX3)
4(2,1) =UOeETAH2+U1+(3.0DO*AUX4-2 . ODO*ETAB2+E1)
4(2,2) =U0*AUX4+U1 % (AUX5+AUX6)
A(2,3)=ETAH2
4(2,4)=(U1/B)*(2.0D0*UO0*(1.0DO~AUX7) +U1* (AUX6+0.5DO+AUXS5))
4(3,1)=1.0D0/3. 0DOsUO*ETAB3+U1#(2.0D0*AUX2-ETAH3+E1)
4(3,2)=0.5D0sU0*AUX2+U1+(0.5DO* AUT3I+F2- AUX7+F1)
4(3,3)=1.0D0/3.0DO*ETAH3
4(3,4)=(U1/B)*(U0*(1.5D0sAUX2-ETAH3sE1) +
1 U1#*(-AUX7#F1+F2+0.25D0#4UI3))
1(4,1)=ETAH
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A(4,2)=F1
4(4,3)=0.0D0
A(4,4)=(U1/B)»AUX2

T(1)=0.0D0
T(2)=C5+AUX4

T(3) =C5+AUX2
T(4)=-(ALP/B)*UH*EDOT

RETURN
EBD
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SUBRQUTINE PERFRM(R,HEXIT,ALPEA,D,AMAT,BMAT,Q,N,VO,BETA,
1 U10,U00,BO,DFDRAG, §S , §F ,PHI)

Qo

SEEREEEE NSRS RNV R SR AR ER R RS R RREFSREEF RSP RE RS TR R R b ek ok e kb b Rk kbR %D

THIS SUBROUTIBE COMPUTES THE THRUST AUGMENTATION RATIO IN TWO
INDEPENDENT CALCULATIONS; BY INTEGRATIOB OF THE SURFACE PRESSURES, AND BY A
CONTROL VOLUME ANALYSIS USING THE BLASIUS MOMENTUM THECREM. A SUMMARY OF
THE PERFORMANCE PARAMETERS ARE WRITTEN TO THE OUTPUT FILE OUT.DAT.

*#sx LATEST REVISION - 23 APR 1987 =
s*+ PARAMETER DESCRIPTION ss=*

IEPUT:
R - VECTOR CONTAINING THE JET PARAMETERS AT THE SHROUD EXIT
HEXIT - CHANNEL EXIT HALF WIDTH
ALPEA - VECTOR OF PANEL ORIENTATION ARGLES
D -~ VECTOR OF PANEL LENGTHS
AMAT - MATRIX OF X COMPUNENT INDUCED VELOCITIES
BMAT - MATRIX OF Y COMPOBENT INDUCED VELOCITIES

Q - VECTOR CONTAINIEG THE SOURCE STRENGTHS

| | - NUMBER OF PANELS

vo - FREE-STREAM SPEED

BETA - ANGLE OF ATTACK

vi0 - JET INITIAL CE¥TERLINE VELOCITY

Uoo - INITIAL UO COMPONENT OF VELOCITY

BO - INITIAL JET VELOCITY BALF-WIDTH

DFDRAG- PRESSURE DRAG ASSOCIATED WITH THE DIFFUSER

| ] - PANEL INDEX OF THE SHROUD NOSE START

¥F - PANEL IBDEX OF THE SHROUD NOSE FINISH
QUTPUT:

PHI - THRUST AUGMENTATIOB AS COMPUTED BY THE NUMENTUM THEOREM

aoaooaaoaocaooo0o000acaOao0oOo00a00a0000Q0a0aQa00n

ARSI I B B B 2 T IOE JE JNE SN BN BN Y UEE WEY JEE JEE JNE JEE JEE JEE IR JER SR R N 4

Cronsstntsssttsdasts suess bt istaisst sttt ssss sttt nsst sttt stssasehResaannass
[

IMPLICIT REAL#*8(A-H,0-2)

DIMENSION R(S),ALPHA(N),D(N),AMAT(N,N) ,BMAT(E,E),Q(N)

c
PI=3.14159265D0
ALP=DSQRT(DLOG(2.0DO))
[+
Cc «ss COMPUTE THE PRIMARY JET MCMENTUM FLUI s
Cc
RMJI=BO/ALP*DSQRT(PI)»(U00*U10+0.5D0/DSQRT(2.0DO0) sU10*»2~
1 0.5D0*V0U10)
c
Cc *«*+ IRTEGRATE THE SURFACE PRESSURES e
C
SUM3=0.0D0O
VOX=V0sDCOS (BETA)
VOY=VO+DSIN(BETA)
[
DO I=NS,HF
[
SUM1=0.0D0
SUM2=0.0D0
DO J=1,X

SUM1=SUM1+AMAT(I,J)*Q(J)
SUM2=SUM2+BMAT(I,J)*Q(J)
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END DO
c
U=SUM1+VOX
V=SUM2+VOY
c
SUM3=SUM3+0. 5D0# (UsU+V#V-V0##2) #D(I) * DSIN(ALPHACI))
c
END DO
c
c s«s TAUX IS THE INDUCED TERUST wax
¢
TAUX=SUN3
c
UO=R(1)
U1=R(2)
P =R(3)
B =R(4)

Q

[+ HeNeN?e]

Qa

(o]

10

Q

ETAH=ALP+HEXIT/B
*»+ COMPUTE THE MOMENTUM FLUX EXITING FROM THE EJECTOR

TGROSS=B/ALP#(UO#»2+ ETAR+DSQRT(PI) »UO«U1*DERF (ETAH) +

1 0.5D0*DSQRT(PI/2.0D0) sUl»#2%
2 DERF(DSQRT(2.0DO) *ETAH)) -
3 VO+B/ALP* (ETAH*UO+DSQRT(PI)/2.0D0+U1+DERF (ETAH))

#++ COMPUTE THE THRUST AUGMENTATION RATION USIEG THE
»»» MOMENTUM THEOREM AND SURFACE PRESSURE CALCULATION

PHIMT=TGROSS /RMJ
PHISP=1.0D0+(TAUX-DFDRAG) /RM]

s+» COMPUTE THE INDUCED THRUST FROM THE MOMENTUM THEOREM
TIND=TGROSS-RMJ+DFDRAG
s*» WRITE RESULTS TO FILE OUT.DAT.

WRITE(21,10) RMJ,TGROSS,TAUX,TIND,DFDRAG,PHISP,PHEIMT
FORMAT(//,’ JET MOMENTUM = ’,F10.5,

1 ’ EXITING MOMENTUM = ’,F10.5,/,
2 > INDUCED TERUST COMPUTED FROM SURFACE PRESSURES = ’,F10.5,/,
3 ’ INDUCED THRUST COMPUTED FROM MOMENTUM THEOREM = ’,F10.5,/,
4 ’ PRESSURE DRAG ASSOCIATED WITH THE DIFFUSER = ’,F10.5,/,
4 ’ THRUST AUGMENTATION RATIO FROM SURFACE PRESSURES = ’,F10.5,/,
5 7 THRUST AUGMENTATION RATIO FROM MOMENTUM THEOREM = ’,F10.5)
+«*+ CHOOSE THE MOMEETUM THEOREM CALCULATED VALUE OF PEI
PHI=PHINT
RETURE
END

x %

E a2

EE R

k%
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SUBROUTIBE SURFVEL(XCONT,XEXIT,XCP,YCP,D, AMAT,BMAT,Q,¥,

1 V0,BETA,SC,UEXT,NEXT,XLEN,STAG)
Cc
[ L e s e e P E Lt e I I LT
. c *
[ THIS SUBROUTINE COMPUTES THE SHROUD SURFACE VELOCITY FROM THE INVISCID =
C SOLUTION FOR USE IN THE BOUNDARY LAYER CALCULATION. *
[ *
[+} sss LATEST REVISION - 22 APRIL 1987 »%» *
[ *
C #»» PARAMETER DESCRIPTION *»= *
[ *
[ INPUT: *
C XCONT - X COORDINATE OF THE CONTROL STATION ]
C XEXIT - X COORDINATE OF THE SHROUD EXIT =
] c Xcp - VECTOR CONTAINING THE X COORDINATES OF THE CONTROL POINTS *
C YCP - VECTOR CONTAINIEG THE Y COCORDINATES OF THE CONTROL POINTS *
cC D - VECTOR CONTAINING THE PANEL LEBGTHS =
C AMAT =~ MATRIX OF HORIZONTAL IBDUCED VELOCITIES *
C BMAT - MATRIX OF VERTICAL INDUCED VELOCITIES »
c Q ~ VECTOR CONTAIRING THE SOURCE STRENGTHS =
cC 1 - BUMBER OF PANELS »
c Vo - FREE-STREAM SPEED *
C BETA - ANGLE OF ATTACK .
c SC - VECTOR OF SURFACE COORDINATES AT WEICH THE VELOCITIES ARE -
C CALCULATED. THE SURFACE COORDINATES ARE NORMALIZED SUCH THAT THE =
C CONTROL STATION LOCATION IS 1. THE ORIGIN IS THE STAGNATICN POIRT =
C IF A FREE-STREAM IS PRESENT AND THE SEROUD TRAILING EDGE FOR *
Cc STATIC OPERATION -
C UEXT - VECTOR CONTAINING THE SURFACE VELOCITIES *
C NEXT - NUMBER OF STATIONS AT WHICH THE VELOCITY IS CALCULATED *
C XLEN - LENGTH OF THE SURFACE OVER WHICH THE THE VELOCITIES ARE CALCULATED #
C STAG - LOGICAL VARIABLE SET TO TRUE WHEN A STAGNATION POINT IS PRESENT *
C *
[ T L T T Y P P T
c
IMPLICIT REAL#8(A-H,0-Z)
LOGICAL STAG
DIMENSION XCP(X),YCP(N),D(N),AMAT(N,N),BMAT(N,N),Q(ID
DIMENSION SC(100),UEXT(100)
LOGICAL FLAG
C
VOX=V0*DCOS (BETA)
VOY=VOsDSIN(BETA)
C
C «s+ FIND PANEL INDEX OF SEROUD TRAILING EDGE #»»
[

DO 10 I=N,1, -1
IF(XCP(I-1) .LT.XEXIT) GOTO 20
10 CONTINUE

20 iS=1
ESJ=NS
C
[ s+ FIND THE PANEL INDEX OF THE CONTROL STATION ##»

FLAG=.FALSE.
DO 30 I=NES,1, -1
IF(XCP(I-1).GT.XCP(I)) FLAG=.TRUE.
IF(FLAG.AND.XCP(I) .GT.XCONT) GOTO 40
30 CONTINUE
40 NF=I+1
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¥FI=I
K=0

c

¢ #++ STORE THE SURFACE COORDINATES AND COMPUTE THE »ss

c ses SURFACE VELOCITIES sas

c

aaoao

aQaaaa

100
C
C
C

DO 100 I=ES,HF,-1
IF(1.EQ.BS) THEX
K=K+1
S=XEXIT-XCP(I)
sc(1)=s
X=XCP(I)
Y=XCP(I)
SUM1=0.0DO
SUN2=0.0DO
DO J=1,X
SUM1=SUM1+AMAT(I,J)#Q(J)
SUM2=SUM2+BMAT(I, J)*Q(J)
EED DO
U=SUM1+V0X
V=SUM2+VOY
UEXT(K)=DSQRT(UsU+V*V)
ELSE
S=5+D(I+1)/2.0D0+D(I)/2.0DO0

#*+ FILTER THE VELOCITY DATA WHICE IS TAKEN IN A REGION »==
#s» ADJACENT TO THE COBTROL STATION SINGULARITY. hhdd

X=XCP(I)

Y=XCP(I)

SUM1=0.0DO

SUM2=0.0DO

D0 I=1,X
SUM1=SUN1+AMAT(I,J)*Q(J)
SUM2=SUM2+BMAT(I,J)*Q(J)

END DO

U=SUM1+V0X

V=SUM24VOY

UMOD=DSQRT(UsU+VeV)

IF(S.LT.5.0) THEN

#s» INCLUDE TEE LOCAL POINT ONLY IF THE »#*
saxs VELOCITY IS INCREASING s

IF(UMOD.GT.UEXT(K)) THEN
K=K+1
SC(K)=5
UEXT (X)=UMOD

END IF

ELSE
K=K+1
SC(K)=§

UEXT (K)=UMOD

END IF

END IF
CONTIBUE

#+s SEARCH FOR THE STAGNATION POINT (MINIMUM VELOCITY MODULUS) #»»

UMIE=10.0D0
DO 105, I=1,K
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105

aagaa

TR+ ¢]

IFCUEXT(I).LT.UMIN) TREN
UMIN=UEXT(I)
L=I
END IF
CONTINUE
IF(L.EQ.1) THEN
STAG=.FALSE.
ELSE
STAG=.TRUE.
EED IF

#s+ CORRECT IF BOT ALL DATA IS FROM THE SAME SIDE OF THE s#»
#«» STAGNATION POINT s

IF(STAG) THEN
TEST=(UEXT(L+2)-UEXT(L+1))/(UEXT(L+1)-UEXT(L))
IF(TEST.GT.10.0) L=L+1

EED IF

+s» BORMALIZE SURFACE COORDINATES SKIPPING OVER POIRTS SUFFERIEG  »=»
s+« FROM SINGULARITIES NEAR THE CONTROL STATION (LAST THREE POINTS) *=*

BEEND=(X-2)

IF(STAG) THEN
$0= SC(L) - (SC(L+1)-SC(L))*UEXT(L)/(UEXT(L+1)-UEXT(L))
$C(1)=0.0D0
UEXT(1)=0.0DO
JEXT=K-L
k=1

ELSE
S0= 0.0D0
TEXT=EEED
K=0

END IF

XLEN=SC(NERD)-S0

DO 110 I=L,NEND
K=K+1
SC(K)=(SC(I)-S0)/XLEK
UEXT(K)=UEXT(I)

COBTIBUE

RETURE

END
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FUBCTIOE V(S,SD,Y)

C
CRERRRERERSAERERBHEARRRBERENBREAEE BRSNS SRR ARRRABRRREE AR ARSI RRRRAR KRR EESEBRBRE
C .
C FUNCTIONY V COMPUTES THE VERTICAL COMPONENT OF VELOCITY FROM THE VISCOUS -
C SOLUTIOS. -
C »
C #s«+ LATEST REVISION - 25 JAN 1987 »s» *
Cc *
c #x+ PARANETER DESCRIPTION »**# *
[ *
Cc INPUT: *
c S - VECTOR CONTAINING THE VALUES OF THE JET PARAMETERS *
C SD - VECTOR CONTAI¥ING THE VALUES OF THE DERIVATIVES OF THE JET L
C PARAMETERS -
c Y - CARTESIAN COORDINATE (VERTICAL DISTANCE FROM JET CENTERLINE) *
C *-
C OUTPUT: *
c v - VERTICAL COMPONENT OF VELOCITY *
C *
T T e L  E E e Lt
Cc

IMPLICIT REAL#8(A-H,0-2)

DIMERSION S(4),SD(4)
(o}

ALP=DSQRT(DLOG(2.0DO))

PI=3.1415926D0
C

U0o=s(1)

U1=5(2)

P =5(3)

B =5(4)
[

UODOT=SD(1)

U1DOT=SD(2)

PDOT =SD(3)

BDOT =SD(4)
C

ETA=ALP+Y/B

F=DSQRT(PI)/2.0DO*DERF(ETA)

E=DEXP(-ETA*+2)
C

V=-B/ALP*(ETA+UODOT+F+U1D0T+U1/B+(F-ETA+E) +BDOT)
[

RETURN
END
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B.3.2 Dual-Jet Library TWINLIB

SUBROUTINE DERIVi(M,X,S,SD)

C

(o e T e T P e P P L Y2
(o} -
[ SUBROUTIBE DERIViI COMPUTES THE DERIVATIVES OF THE JET PARAMETERS WITHIN »
C THE VISCOUS-INVISCID MATCEING REGION. *
C H
C  »»» LATEST REVISION - 23 APR 1987 sesx .
C *
(o #s% PARAMETER DESCRIPTION s»» *
C INPUT: *
CH - NUMBER OF JET PARAMETERS 3
cI - DISTANCE FROM THE JET ORIGIN *
cSs - VECTOR CONTAINIRG THE JET PARAMETERS UO,U1,P,A,B,Y1,Y1DOT .
C RESPECTIVELY .
[ -
[ OUTPUT: .
C SD - DERIVATIVES OF THE JET PARAMETERS »
Cc *

c‘.‘.t#‘.“““‘#“““.‘-“““““#.““““““l“‘“"“.t‘.#““‘.#‘t‘t“‘
c

IMPLICIT REAL#8(A-H,0-2)

DIMENSION S(7),SD(7),¥(2,2),RHS(2),C(2,2)

COMMON UO,U1,P,A,B,Y1,ALP

C
C ss+ DECODE THE S ARRAY SO THE PARAMETERS MAY BE SENT IN COMMOYN e
C
Uo=s(1)
U1=s(2)
P=5(3)
1=5(4)
B=S(5)
Y1=5(6)
DY1DX=5(7)
C
c s*+ COMPUTE THE CURVATURE OF THE JET CENTERLINE >
C
CALL FORCE1(X,DY1DX,UODOT,ADOT,D2Y1DX)
C
C #s+ CON IS A REPEATEDLY USED CONSTANT. RK IS THE EDDY VISCOSITY  #»s
C ss+ SCALING COESTANT. RMU IS THE EDDY VISCOSITY COEFFICIENT (2L
c
CON=1.0D0-DLOG(2.0D0)/2.0DO
RK=0.0283D0
RMU=RK+U1+B
C
C sss COMPUTE THE MATRIX ELEMENTS ABD RIGHT HAND SIDE
C
Di1UO =2.0D0*U1
C(1,1)=U0+4.0D0/3.0D0*U1+0.5D0*A
D1a  =U1-0.5D0*CON=A
€(1,2)=1.0D0/B*(U1+(U0+2.0DO0/3.0DO#U1+0.5D0#4) -0.25D0*CON*A+2)
T1=0.0DO
RES (1) =T1-(D1UO*UODOT+D1A+ADOT)
c

D2UO =2.0DO»U1#(2.0D0*UO+U1+4)-0.25D0% A++2
C(2,1)=2.0D0*U0*(U0+2.0D0*U1+4) +U1#(1.6D0sU1+2 . ODO%A) +0.5D0* A+ +2
D2a =UL»(U1+2.0D0*UQO+A) ~CON¢A* (UO+0.5D0*4)-0.125D0% A*s2
C€(2,2)=1.0D0/B* (U1+#2+(2.0D0*U0+8.0D0/15.0D0sUL+4) +
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1 2.0DO*UO*U1+(UO+A) +

2 0.5D0%A**24 (-COR* (U0+0.5D0#4)+U1))
T2=-RMUs (ALP/B) *#2#(16.0D0/15.0D0%U1*#2+1.0D0/3.0DO*A**2)
RES (2) =T2~(D2UO*UODOT+D2A+ADOT)

C
C «s+ SOLVE THE LINEAR SYSTEM FOR THE DERIVATIVES OF THE JET
C «** PARAMETERS
C
CALL SIMQ(C,V¥,RHS,2,2,IER)
C
C #»+ LOAD THE DERIVATIVES OF THE JET PARAMETERS IETC THE SD ARRAY
[+
$D(1)=U0DOT
SD(2)=RES(1)
SD(3)=-U0sUODOT
SD(4)=ADOT
SD(5)=RES(2)
SD(6)=DY1DX
SD(7)=D2Y1DX
C

RETURN
END

xh
k%

&k
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SUBROUTINE DERIV2(M,X,S,SD)
C
CHRRAS AR RS RXRRRB AR AR AR R RS R SRS BIIREREE RN R RN RS SR RS KNSR SRR AR RSN A R XSRS
*
SUBROUTIRE DERIV2 COMPUTES THE DERIVATIVES OF THE JET PARAMETERS WITHIN =
THE FULLY VISCOUS REGION. *

#ss LATEST REVISION - 23 APR 1987 »#»

»#% PARAMETER DESCRIPTION ##s
IBPUT:
.| - BUMBER OF JET PARAMETERS
X ~ DISTANCE FROM THE JET ORIGIN
~ VECTOR CONTAINING THE JET PARAMETERS: UO,U1,P,A,B,Y1,DRAG
OUTPUT:
SD - VECTOR CONTAINING THE DERIVATIVES OF THE JET PARAMETERS

aooaooaaaoao0ao0aa0aan
w

L R K B B B 2R R R 2 B

T L T T P TP T T T YT
[

IMPLICIT REAL+*8(A-H,0-2)

LOGICAL DUMP

DIMENSION S(7),SD(7),%(6,6),RES(6),C(6,6) ,WK(6),D(35),SUM(3S)

COMMOR UO,U1,P,A,B,Y1,ALP

=x+ AREA 18 IS SHARED WITH PERFOR AWND TWOJET. e
s*s AREA 21 IS SHARED WITH DUOAUG AND TWOJET. xx
#s» ERROR IS SHARED WITE  DUOAUG AED TWOJET. e

Qoaoaa

COMMON /AREA18/ B, HDOT
COMMOX /AREA21/ DIFSLP,XDIFF
COMMOB /ERROR/ IERROR

+#++ DEFINE THE INVERSE HYPERBOLIC COSINE FUNCTION L

[+ e e]

DACOSH(X)=DLOG(X+DSQRT(X##2-1.0D0))

aa

*«++ ABORT IF AN ERROR CONDITION EXISTS bk

IF(IERROR.EQ.1) GOTO 200

[e]

s*s DECODE THE S VECTOR SO TEE VALUES MAY BE SENT IN COMMON L3

Uo=s(1)
U1=5(2)
P=s(3)
A=5(4)
B=5(5)
Y1=5(6)

Q

*++ COMPUTE THE DIFFUSER SLOPE AND CHANNEL WIDTH an

IF(X.LT.XDIFF) TEEN
H=2.0D0
HDOT=0.0DO

ELSE
B=2.0DO+(X-XDIFF)*DIFSLP
BDOT=DIFSLP

END IF

#++ DEFINE REPEATEDLY USED CONSTANTS Lhad

aa
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aaaon

aaoaoon

Q

ao

2]

CONST=ALP/B
C1=2.0D0+CONST+U1
U1SQ=Ules2
AD2=4/2.0DO

s»+ COMPUTE THE EDDY VISCOSITY COEFFICIENT (UCL AND UMAX ARE
»++ NORMALIZED BY U1)

ETA1=Y1sCONST
C2=DCOSHE(2.0DO*ETA1)
C25Q=C2*#2
UCL=4.0D0/(1.0D0+C2)
ET=0.5D0*DACOSH(2.0D0)
IF(ETA1.LT.ET) THEN
ETAMAX=0.0DO
UMAX=UCL
ELSE
ETAMAX=0.5DO*DACOSH((C25Q-2.0D0)/C2)
UMAX=C25Q/(C25Q-1.0D0)
END IF
G=4.0D0/UMAX
F=G-1.0D0
FSQ=F#»2
ETASTR=0.5DO#*DACOSH(F+C2+DSQRT((FSQ-1.0D0) *C25Q+2.0D0*G))
BTILDA=(ETASTR-ETAMAX*(1.0DO-UCL/UMAX))/CONST
UTILDA=U1+UMAX
RK=0.0283D0
RMU=RK+UTILDA+B

«»s INITIALIZE INTEGRATION PARAMETERS. YL IS THE LOWER LIMIT OF
«*+ JETEGRATION, YU IS THE UPPER LIMIT, NINT IS THE NUMBER OF
+«»+ SUBINTERVALS, AND DY IS THE SUB-INTERVAL SIZE

YL=0.0D0

YU=H

NINT=INT(4.0DO*H/B)

IF(DMOD(DFLOAT(NINT) ,2.0D0).GT.0.1D0) NINT=NINT+1
DY=(YU-YL)/DFLOAT(NINT)

s+ INITIALIZE TEMPORARY STORAGE SPACE TO ZERO

EVEC=35

DO I=1,NVEC
SUM(I)=0.0D0

EED DO

ss* ENTER THE INTEGRATION LOOP ###

Y=YL
DO I=0,NINT

#=s+ DEFINE REPEATEDLY USED TERMS

ETA=CONST*Y
ARG1=CONST#(Y+Y1)
ARG2=CONST*(Y-Y1)
T1=DTANECARG1)
T2=DTANE(ARG2)
515Q=1.0D0-T1##2
S25Q=1.0D0-T2#»2
T1515Q=T1#515Q

L2 22
E 24

%%
kR
8%

E 2 2]
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Q

aaaa

e NN rE:]

T2S25(Q=T2#525Q
G1=515Q# (3. 0D0*S15Q-2.0D0)
G2=525Q# (3. 0D0*$25Q~2.0D0)
Q1=DLOG(DCOSB(ARG1))
Q2=DLOG(DCOSH(ARG2))
SUM1=T1+T2

SUM2=515Q+525Q
SUM3=T1S1SQ+T252SQ
SUM4=ARG1#51SQ+4RG2#525Q

ss+ COMPUTE VELOCITY ABD DERIVATIVES

U=UO+AD2# (T1-T2) +UlsSUM2

DUDY=-CONST# (AD2* (-S1SQ+S25Q) +2.0DO»U1+SUN3)

D2UDY2=-CONST#*2+ (A+ (T151SQ-T2525Q)+
2.0D0*U1*(G1+G2))

+»+ COMPUTE THE COEFFICIENTS OF THE DERIVATIVES OF THE JET

*»» PARAMETERS

FUO=U-ETA/CONST»DUDY

FU1=SUM2#U-(T1+T2)/CONST*DUDY

FP =1.0D0

FA =0.5D0*(T1-T2)+U-0.5D0/CONST*(Q1-Q2)*DUDY

FB =1.0DO/B*(AD2*(-ARG1+S1SQ+ARG2#S2SQ)+

2.0DO*U1*(ARG1*T1S15Q+ARG2*T2S2SQ) ) # U~
1.0DO/ALP* (AD2#» (-ARG1*T1+Q1 +ARG2+T2-Q2) +
Ui (-SUM4+SUM1) ) »DUDY
FY1=ALP/B#*(AD2sSUM2+
2.0DO*U1*(-T1S15Q+T2525Q) ) »U-

(AD2+SUM1+U1+(515Q-525Q) ) »DUDY

TAU=RMU*DUDY

IF(Y.EQ.YH) TAU=0.0DO

«»+ ENTER A LOOP TO CYCLE THROUGH THE DIFFERENT WEIGETING
«++ FURCTIONS

II=5
DO ¥=0,4
IP1=II+1
IF(IP1.GT.5) IP1=IP1-5
IpP2=1I+2
IF(IP2.GT.5) IP2=IP2-5
IP3=II+3
IF(IP3.GT.5) IP3=IP3-5
IP4=II+4
IF(IP4.GT.5) IP4=IP4-5
IF(F§.EQ.0) THEN
WEIGHT=FP
DWTDY=0.0DO
END IF
IF(N.EQ.II) THEN
WEIGHT=FUO/U1
DWTDY=(-ETA/COBST*D2UDY2) /U1
END IF
IF(N.EQ.IP1) THEN
WEIGHT=FU1/U1
DWTDY=(~2.0DO+CONST+SUM3+U-
1.0DO/CONST#SUM1#D2UDY2) /U1
END IF
IF(K.EQ.IP2) THEX

*h%

k%
L 2 34

%
E 2
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WEIGHT=FB/U15Q
DWTDY=(COEST/B# (AD2# (-S15Q#(1.0D0-2.0DO*ARG1+T1) +
1 $25Q#(1.0D0-2.0DO%ARG2%T2)) +
2 2.0D0*U1#(SUM3+ARG1#G1+ARG2#G2) ) #U-
3 1.0DO/ALP# (AD2#(~ARG1#T1+Q1+ARG2¢T2-Q2) +
4 U1+ (-SUM4+SUM1) ) +D2UDY2) /U15Q
EED IF
IF(N.EQ.IP3) THEN
WEIGHT=FY1/U15Q
DWTDY=(-CONST##2% ( A+SUM3+
1 2.0DO*U1%(G1-G2))*U-
3 (AD2#SUM1+U1% (S15Q-525Q) ) *D2UDY2) /U15Q
END IF
IF(¥.EQ.IP4) THEN
WEIGHET=FA/U1
DWTDY=(0.5DO*CORS T+ (515Q-525Q) *U-
1 0.5D0/CONST*(Q1-Q2) «D2UDY2) /UL
EED IF
c
C »ex LOOP TO FIND THE VALUES OF ALL OF THE INTEGRANDS e
c
1ND=N*7
D0 J=1,6
IF(J.EQ.1) F=FUO
IF(J.EQ.2) F=FU1
IF(J.EQ.3) F=FP
IF(J.EQ.4) F=FB
IF(J.EQ.5) F=FY1
IF(J.EQ.6) F=FA
D(IND+J)=F+WEIGHT
EED DO
D(IED+7)=-TAU+DWTDY
END DO
C
c #+s SET THE SIMPSON’S RULE INTEGRATION WEIGHTING FACTORS e
c
R=2.0D0
IF(DMOD(DFLOAT(I),2.0D0) .GT.0.1D0} R=4.0D0
IF(I.EQ.C.O0R.I.EQ.NINT) R=1.0DO
c
c #s+ FIND CONTRIBUTIONS TO TEE INTEGRALS e
c
DO J=1,MVEC
SUN(J) =SUM(J) +R+D(J)
END DO
c
c- #++ INCREMENT Y s
c
Y=Y+DY
c
END DO
c
c »++ STORE APPROXIMATED INTEGRALS s*=
c

FACT=DY/3.0DO
DO N=0,4
NP1=0+1
IND=Ns7
DO I=1,6
C(FP1,I)=SUM(IND+I)*FACT
END DO
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RES (NP1) =SUN(IND+7) #FACT
END DO
c )
c ss+ ENFORCE CONTINUITY ON TEE UPPER VALL #es
c

1

QO

107

aa

€(6,1)=-ETA/CONST
C(6,2) =~ (T1+T2) /CONST
€(6,3)=0.0D0
C(6,4) =1 .0D0/ ALP* (AD2% (~ARG1+T1+Q1 +ARG2¢T2-G2)+
U1+ (-ARG14S1SQ-ARG2#S52SQ+T1+T2))
C(6,5) =~ (AD2# (T1+T2) +U1+(515Q-525Q))
€(6,6)=-0.5D0/CONST*(Q1-Q2)
RES (6) =EDOT*U

s#»» SOLVE THE LIBEAR SYSTEM FOR THE DERIVATIVES OF THE JET PARAMETERS»#*

D1=0.0DO

CALL LINV3F(C,RBS,2,6,6,D1,D2,¥,IER)

IF(IER.EQ.130) THERN
WRITE(3,107)
FORMAT(’> ERROR IN DERIV2: LINV3F FOUND A SINGULAR MATRIX ?)
IERROR=1 .
GOTO 200

END IF

DET=D1#(2.0D0) #*D2
#*x LOAD THE SD VECTOR WITH TEE DERIVATIVES OF THE JET PARAMETERS *»=

SD(1)=RHS (1)
SD(2)=RES(2)
SD(3)=RES (3)
S$D(4)=RES(6)
SD(5)=RES(4)
SD(6)=RHS(5)
SD(7)=SD(3)*H

IERROR=0
RETURKN

s«+ ON ERROR CONDITION, ZERO TBE JET DERIVATIVES rae
DO I=1,6

SD(I)=0.0DO
END DO

RETURN
END
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SUBROUTIEE DUOBOD(XJ,YJ,DY1DX0,Y1CS,NJLS ,BJLF,¥JUS,NJUF,

1 §S,BF,IER)
c
CHEEAESSRRERNRARERBRRES SRR RAS AR SRS RRERE R AR ASAR AR AR SRR SRR SR SRR RS AR SR E KRR E R SRR

SUBROUTINE DUOBOD GENERATES THE COORDINATES OF TEE EJECTOR SHROUD FOR
THE DUAL JET EJECTOR. THE SUBROUTINE READS DATA FOR THE JET TRAJECTORY
CONTAINED IF LOGICAL UNIT 20 (FILE JETCL.DAT).

#s% LATEST REVISION - 23 APR 1987 ==+«

s*+ PARAMETER DESCRIPTION #=»
IFPUT:
XJ - X COORDINATE OF THE JET NOZZLE
YJ - Y COORDINATE OF THE JET NOZZLE
DY1DX0 - INITIAL JET SLOPE

OUTPUT:
YICS - Y COCRDINATE OF THE JET CENTERLINE AT THE CONTROL STATIOR
¥ILS - INDEX OF THE START OF THE JET LOWER SIDE BOUNDARY
NJLF - INDEX OF THE FINISH OF TEE JET LOWER SIDE BOUEDARY
¥Jjus - INDEX OF THE START OF THE JET UPPER SIDE BOUNDARY
NJUF -~ IEDEX OF THE FINISE OF THE JET UPPER SIDE BOQUNDARY
¥S ~ IKDEX OF THE START OF THE EJECTOR SHROUD NOSE
§F - INDEX OF THE FINISE OF THE EJECTOR SHROUD NOSE
IER - ERROR PARAMETER 1 FOR ERROR COEDITION O FOR NORMAL EXECUTION

o000 00000a00000aa0
LR TAE TN BN PN K R I TN SR JER JEE JEE BEE BEE JEE JER 2R SN R N J

T T T e e L
C

IMPLICIT REAL#8(A-B,0-2)

DIMERSICY XCL(100),YCL(100),SPLE(300)

DIMENSION XTMP(300)

«»+ DEFINE POWER-LAW STRETCHING FUNCTION hddd

[¢]

COORD(I,SF,X0,X1)=((X1-X0)*SF**DFLOAT(I)~-(X1-SF*X0))/(SF-1.0D0)
RAD(DEG)=DEG/180.0D0*PI

PI=3.1415926D0

BH=0.05D0

DX0=0.04D0

DX1=0.3D0

SLPJET=DTAN(RAD(9.0D0))
0 FORMAT(3F15.5)

«** READ IN THE COORDINATES OF THE JET CENTERLINE #s=*

Qaor

REWIED 20
DO I=1,100
READ(20,s,END=15) XCL(I),YCL(I)
EXD DO
5 CONTINUE

*+» EITRAPOLATE TO GET ONE MORE POINT s»»

aaa-

§=I-:

DELX=5.0D0
DYDX=(YCL(N)-YCL(N-1))/(XCL(K)-XCL(N-1))
XCL(¥+1)=ICL(N)+DELX
YCL(¥+1)=YCL(N)+DYDX*DELX

NCL=N+1
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[¢]

«s» SPLINE FIT THE JET CENTERLIEE #»»

CALL ICSCCU(XCL,YCL,NCL,SPLK,NCL-1,IER)

Q

#+s DETERMINE THE COORDINATES OF THE CONTROL STATION *»»*

X=XCL(NCL-1)+1.0DO
TOL=1.D-4
DO I=1,100
CALL INTRP(X,XCL,YCL,NCL,SPL¥,NCL-1,Y1,DY1DX,D2Y1DX,IER)
IF(IER.NE.0) THEN
WRITE(3,5) IER,X
5 FORMAT(’ ERROR IN DUOBOD: INTRP RETURNED WITH IER = ’,I3,
1 » X = ,F10.5)
TER=1
RETURK
END IF
YB=DABS (1.0D0-Y1) +DABS (HE+(X-XJ) #+SLPJET)
RES=0.8D0-YB
IF(I.EQ.1) THEN
¥=1.0D0
ELSE
W=-(X-XOLD) / (RES-RESOLD)
END IF
XOLD=X
RESOLD=RES
X=X+WeRES
IF(DABS(RES) .LT.TOL) GOTO 7
EED DO
7 CONTINUE
xcs=x
IF(XCS.LT.1.0D0) THEN
VRITE(3,13)
13 FORMAT(’> ERROR IN DUOBOD: XCS WAS LESS THAN 1.0%)
1ER=1
RETURY
EED IF
CALL INTRP(XCS,XCL,YCL,NCL,SPLN,¥CL-1,Y1CS,DY1DX,D2Y1DX,IER)
IF(IER.NE.O) THEN
WRITE(3,5) IER,X
IER=1
RETURK
END IF
YLWR=Y1CS-(EH+(XCS-XJ) «SLPJET)
YUPP=Y1CS+(EE+(XCS-XJ) «SLPJET)
SLPCS=DY1DX

*ss GENERATE AND TEMPORARILY STORE THE X COORDINATES »»=
#*s FOR THE JET BOUNDARY *kx

aaoaa

DIST=(ICS-XJ)/2.0DO
SF=1.5D0
X0=XJ
X1=X0+DX0O
N=INT(DLOG(DIST/DXO*(SF-1.0D0)+1.0D0)/DLOG(SF))+1
K=0
IF(N.LE.5) THEN
DO I=1,20
F=DIST-DXOs(SF+*N-1.0D0)/(SF-1.0D0)
DF=-DXO* ((DFLOAT(N)#SF##+(N-1)*(SF-1.0D0) - (SF++¥-1.0D0))/
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(SF-1.0D0) »*2)
SF=SF-F/DF

IF(DABS(F).LT.TOL) GOTO 9

EED DO

COSTINVE

DO I=0,N
K=K+1

ITMP(K)=COORD(I,SF,X0,X1)

EED DO

X0=XCS

X1=X0-DXO

D0 I=§-1,0,-1
K=K+1

XTMP(K)=COORD(I,SF,X0,X1)

END DO
NIET=K
ELSE
DO I=0,5
K=k+1

XTKP(K)=COORD(I,SF,X0,X1)

END DO

X0=XCS

X1=X0-DXO
XP=C00RD(5,SF,X0,X1)
DIST=XP-XTNP(K)
DX=0.3D0
NMID=NINT(DIST/DX)

IF(EMID.GT.0) DX=DIST/DFLOAT(NMID)

DO I=2,§MID
K=K+1
XTMP(K)=XTMP(K-1) +DX
END DO
DO I=5,0,-1
K=K+1

XTMP(K)=COORD(I,SF,X0,X1)

END DO
NJET=K
EED IF

*x» GENERATE UP TO THE LOWER CONTROL STATION *»=

L=0

X0=0.0D0
X1=X0-DI1
SF=1.6D0
DIST=20.0D0

NPTS=EINT(DLOG((SF-1.0DO)*DIST/DX1+1.0D0)/DLOG(SF))

Y=0.0D0

VE=0.0D0

DO I=NPTS,0,-1
X=COORD(I,SF,X0,X1)
L=L+1
WRITE(1,10)X,Y,VE

EED DO

SF=1.2D0
A=DATAN(SLPJET)-DATAN(SLPCS)
ANG=PI/2.0DO-A
R=YLWR/(1.0DO+DSIN(ANG))
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[¢]

XAC=XCS-R+DCOS (ANG)

10=XC

X1=X0-DX0O
¥¥=NINT(DLOG(DX1/DX0)/DLOG(SF))

XT=COORD(NE,SF,X0,11)
DIST=XT-0.0DO
IF(DIST.LT.0.0D0) THEN
¥E=NIBT(DLOG((SF-1.0DO)*X0/DX0+1.0D0) /DLOG(SF))
ERD IF
¥=NINT(DIST/DX1)
IF(N.GT.0) DX=DIST/DFLOAT(N)
DO I=1,N
X=X+DX
L=L+1
WRITE(1,10)X,Y,VE
END DO

DO I=NE-1,1,-1
X=COORD(I,SF,X0,X1)
L=L+1
WRITE(1,10) X,Y,VK

EED DO

+«++ GEFERATE THE POINTS FOR THE LOWER CONTROL STATION »#=*

A=DATAN(SLPJET)-DATAN(SLPCS)
ABG=PI/2.0D0-A
R=YLWR/(1.0DO+DSIN(ANG))
IC=XCS-R+DCOS(ANG)

YC=R

DTHO=DXO/R
THETAO=-P1/2.0D0O
THETA1=THETAO+DTHO
DTH=PI/2.0D0-4/2.0D0
SF=0.5D0*R+0.95D0
N=NINT(DLOG((SF-1.0DO)*DTH/DTHO+1.0D0)/DLOG(SF))
DO I=1,20
F=DTH-DTHO* (SF#*+N-1.0D0)/(SF-1.0DO)
DF=-DTHO# ((DFLOAT(N) #SF#**(N~1)+(SF-1.0D0)-(SF*+J-1.0D0)})/
(SF-1.0D0) ##2)
SF=SF-F/DF
IF(DABS(F).LT.TOL) GOTO 6
EXD DO

CONTINUE
DO I=0,8
THETA=COORD(I,SF,THETAO, THETA1)
A=XC+R+DCOS { THETA)
Y=YC+R+DSIN(THETA)
IF(I.EQ.N) THEN
TBNEXT=THETA+(THETA-COORD(I-1,SF,TEETAO, THETA1))
ELSE
THNEXT=COORD(I+1,SF,THETAO, THETA1)
END IF
THMID=(TEETA+TENEXT)/2.0D0
VE=DCOS ( THMID)
L=L+1
WRITE(1,10) X,Y,VE
EED DO
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THETAO=ANG

THETA1=THETAO-DTHO

DO I=B-1,1,-1
THETA=COORD(I,SF, TEETAO, THETA1)
X=XC+R+DCOS (THETA)
Y=YC+R+«DSIN(THETA)
THEEXT=COORD(I-1,SF, THETAO, THETA1)
THMID=(THETA+THEEXT)/2.0DO
VE=DCOS ( THMID)
L=L+1
WRITE(1,10) X,Y,VE

EBD DO

HJLS=L#1

+«s+ GENERATE THE POINTS ALORG THE JET BOUNDARY *##

DO I=BJET,2,-1
X=XTMP(I)
CALL INTRP(X,XCL,YCL,NCL,SPLN,¥CL-1,Y1,DY1DX,D2Y1DX,IER)
IF(IER.EE.O) THEN
WRITE(3,5) IER,X
IER=1
RETURN
END IF
Y=Y1-(HEB+(X-XJ)*SLPJET)
INEXT=XTMP(I-1)
XMID=(X+XNEXT)/2.0DO
VE=DSIN(DATAN(SLPJET)-DATAN{(DY1DX))
L=L+1
WRITE(1,10) X,Y,VN
EED DO
HJLF=L+1

NCIRC=4
RR=HH/DCOS(RAD(12.0D0))
XC=XJ+RRe+DSIN(RAD(12.0D0))
Yc=Y1
DELTH=PI-2.0DO*RAD(12.0D0)
DTH=DELTE/DFLOAT(NCIRC)
THETA=-PI/2.0D0-RAD(12.0DO0) +DY1DXO
VE=0.0D0
DO I=0,NCIRC-1
X=XC+RR¢DCOS (THETA)
Y=YC+RR#DSIN(THETA)
L=L+1
WRITE(1,10) X,Y,VE
THETA=THETA-DTH
EED DO

¥JUs=L
DO I=1,KJET-1
X=XTNP(I)
IF(I.EQ.1) THEN
Y1=Y]
ELSE
CALL INTRP(X,XCL,YCL,NCL,SPLN,ECL~1,Y1,DY1DX,D2Y1DX,IER)
IF(IER.NE.O0) TEER
WRITE(3,5) IER,X
1ER=1
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Q

RETURN
END IF
END IF
Y=Y1+(HB+(X-XJ) *SLPJET)
XNEXT=XTMP(I+1)
XMID=(X+XNEXT)/2.0D0
VE=DSIN(DATAN(SLPJET) +DATAN(DY1DX))
L=L+1
WRITE(1,10) X,Y,VN
EBD DO
NJUF=L

#s+ GENERATE POINTS FOR THE UPPER CONTROL STATICN ##+=

A=DATAN(SLPJET) +DATAN(SLPCS)
ANG=A-PI/2.0DO
R=(2.0DO-YUPP)/(1.0DO-DSIN(ANG))
XC=XCS-R+*DCOS(ANG)

YC=2.0D0-R

DTHO=DXO/R
THETAO=ANG
THETA1=THETAO+DTHO
DTH=PI/2.0D0-A/2.0DO
SF=0.5D0*R+0.95D0
E=NINT(DLOG({(SF~1.0DO)*DTH/DTHO+1.0D0)/DLOG(SF))
DO I=1,20
F=DTH-DTHO#* (SF+#N-1.0D0)/(SF-1.0D0)
DF=-DTHO* ((DFLOAT(N) *SF#+(N-1)+(SF-1.0DO0)-(SF++¥-1.0D0))/
(SF-1.0D0) #»2)
SF=SF~F/DF
IF(DABS(F).LT.TOL) GOTO 8
END DO

CONTINUE
DO I=0,N
THETA=COORD(I,SF, THETAQ, THETA41)
X=XC+R+DCOS( THETA)
Y=YC+R#DSIN{THETA)
IF(I.EQ.X) TEHEN
THNEXT=THETA+(THETA-COORD(I-1,SF, THETAO, TRETA1))
ELSE
THEEXT=COORD(I+1,SF, THETAO, THETA1)
EED IF
THMID=(THETA+THNEXT) /2.0DO
VE=DCOS (THMID)
L=L+1
WRITE(1,10) X,Y,VE
END DO

THETAO=PI/2.0D0

THETA1=THETAO~DTHO

DO I=§-1,1,-1
THETA=COORD(I,SF,THETAO, TRETA1)
X=XC+R¢DCOS (THETA)
Y=YC+R*DSIN(THETA)
THEEXT=COORD(I-1,SF,THETAO,THETA1)
THMID=(THETA+THNEXT) /2.0DO
VE=DCOS (THMID)
L=L+1
WRITE(1,10) X,Y, VN
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EED DO
c
c *+s GENERATE POINTS ON THE UPPER CHANNEL WALL #as
c
10=1C
X1=X0-DX0
Y=2.0D0
VE=0.0D0
SF=1.200
DIST=X0-1.0DO
¥E=NINT(DLOG(DX1/DX0)/DLOG(SF))
¥=TNT(DLOG(DIST/DXO% (SF-1.0D0)+1.0D0)/DLOG(SF))+1
X=0
IF(N.LE.N¥) THEN
DO I=1,20
F=DIST-DXO% (SF+N-1.0D0)/(SF-1.0D0)
DF=-DXOs ( (DFLOAT(H)*SF#(N-1)#(SF-1.0D0)~(SF*++N-1.0D0))/
1 (SF-1.0D0) #22)
IF(DABS(DF) .LT.1.D-6) THEX
SF=SF-F
ELSE
SF=SF-F/DF
EED IF
IF(DABS(F).LT.TOL) GOTO 11
END DO
11 CONTINUE
DO I=0,N-1
X=COORD(I,SF,X0,X1)
L=L+1
WRITE(1,10) X,Y,VK
EED DO
ELSE
DO I=0,NN
1=COORD(I,SF,X0,X1)
L=L+1
WRITE(1,10) X,Y,VE
END DO
DIST=X-1.0DO
N=KINT(DIST/DX1)
IF(N.NE.0) DX=DIST/DFLOAT(N)
D0 I=1,N-1
X=X-DX
L=L+1
WRITE(1,10) X,Y,VN
END DO
EED IF
c
c ##+ GEFERATE THE POINTS FOR THE BODY NOSE ##e
c
NCIRC=12
1C=1.0D0
YC=3.0D0
R=1.0D0

DTH=PI/DFLOAT(NCIRC)

THETA=3.0D0/2.0DO*PI

VE=0.0D0

¥S=L+1

DO 110 I=0,FCIRC
X=XC+R+DCOS (THETA)
Y=YC+R+DSIN(THETA)
LsL+1
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WRITE(1,10) X,Y,VN
THETA=TRETA-DTH
CONTINUE

FF=L-1

DX=0.2D0
SF=1.2D0
10=X
X1=X0+DX
DIST=ICS-X
N=NINT(DLOG(DIST/DXs(SF-1.0D0)+1.0D0)/DLOG (SF))
DO I=1,N
X=COORD(I,SF,X0,X1)
L=L+1
WRITE(1,10) X,Y,VE
EED DO

DX=COORD(N,SF,X0,X1)-COORD(N-1,5F,X0,X1)
X0=X1-DX
I1=X
SF=1.6D0
DIST=20.0D0O-X0
¥=NINT(DLOG(DIST/DX#+(SF-1.0D0}+1.0D0) /DLOGG(SF))
DO I=2,1

X=COORD(I,SF,X0,X1)

L=L+1

WRITE(1,10) X,Y, VN
END DO

IER=0

RETURE
END
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SUBROUTINE FORCE1(X,DY1DX,UODOT,ADOT,D2Y1DX)
c

CHESREBARRERINANSERABERSS SRR ERRLRARREARERSRAS SRR EREERI S RN SIS AB RS S XX REE SR RES
SUBROUTIRE FORCE1 COMPUTES THE CURVATURE OF THE JET CENTERLINE.
*++ LATEST REVISION - 23 APR 1987 s»»

.
.
*
*
.
##+ PARAMETER DESCRIPTION ##» *
INPUT: *

X - DISTANCE FROM TBE JET ORIGIN *
DY1DX -~ JET CENTERLINE SLOPE .
.

.

*

*

-

L

.

OUTPUT:
UODOT - DERIVATIVE OF THE EXTERNAL VELOCITY
ADOT - DERIVATIVE OF THE ASYMMETRY FACTOR
D2Y1DX - SECOND DERIVATIVE OF THE JET CENTERLINE

oo o0acgao0a0ao0a000

CHesasxeas Attt dd SRR ERRSEEREARASRE RS SRR RN ARAR A SANARSFBRAREARABAR SRR LR RED
[

IMPLICIT REAL*8(A-H,0-2)

COMMON UO,U1,P,A,B,Y1,ALP

EXTERNAL USQ
C
C #»s INITIALIZE INTEGRATION PARAMETERS L dd
C
ETAMAX=2.4D0O
YL=Y1-ETAMAX*B/ALP
YU=Y1+ETAMAX*B/ALP
EINT=20
c
c *«s+ COMPUTE PRIMARY JET MOMENTUM haddd
c
RMJ=SIMS(USQ,YL,YU,NINT)
C
c #»+ FIID THE VELOCITY COMPONENTS OF EITHER SIDE OF THE JET L b
C
CALL UPPVLC(X,UU,UUDOT)
CALL LWRVLC(X,UL,ULDOT)
C
C #»s COMPUTE THE PRESSURE JUMP ACROSS THE JET hdd
c
DELP=0.5D0* (UL*UL-UU«UU)
C
C s»+ COMPUTE THE CURVATURE OF THE JET CENTERLINE Lhdd
C
RKAP=-DELP/RMJ
C
UODOT=UUDOT
ADOT=ULDOT-UUDOT
C
C #*s COMPUTE THE SECOND DERIVATIVE OF THE JET CENTERLINE ke
C
D2Y1DX=RKAP#(1+DY1DX#*2)*#1.5D0
C

RETURN
ERD
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SUBROUTINE FSTRM(U10Q,BO,U0Q,40,GAMNA,VO)
(o
(o L R T T L Lt T Lope

SUBROUTINE FSTRM COMPUTES THE VALUE OF THE FREE STREAM VELOCITY GIVEN
TEE PARAMETER GAMMA AND THE VALUES OF THE JET PARAMETERS.

#s» LATEST REVISION - 23 APR 1987 =#»

s+¢ PARAMETER DESCRIPTION #»#
INPUT:
U1o - INITIAL JET EXCESS VELOCITY
BO - INITIAL JET HALF-VIDTH
AO - INITIAL ASYMMETRY FACTOR
GAMMA -~ FREE STREAM SPEED PARAMETER

OUTPUT:
vo - FREE STREAM VELOCITY

acaoooacaooao0oaoaoaoaaaan
L IR 2ER IR B B R R R JEE JNE JEE JEE JNE SR 2 4

C‘#‘.““.“l‘-“‘“".““l""““‘.“‘.““.‘t“‘tt.‘“#‘“‘.““‘l“““‘t‘
c

IMPLICIT REAL#8(4-H,0-Z )

COMMON UO,U1,P,A,B,Y1,ALP

c
C *+* COMPUTE THE PRIMARY JET MOMENTUM FLUX LT
[+
RMJ=2.0D0*BO/ALP#(2.0D0/3.0D0*U10%#2+2. ODO*UOC+U1C+U1 0240~
1 A0%*2/4.0D0)
C
c s*+ COMPUTE THE FREE STREAM VELOCITY e
c
VO=GAMMA+DSQRT(RMJ/4.0D0O)
C

RETURN
END
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SUBROUTINE GETPRM(XJ,YJ,Y1DOTO,XEXIT,DIFSLP,XDIFF,GAMMA,
1 U10,B0, DUMP1)
[
CHESRERIABHARASES SRS ASRSARAEEERA SRS SRR R ERIRER IR RARSRRRRRSRERS BRI REERAB SRR A RS S

THIS SUBROUTINE READS IBPUTS FROM DATA FILE CASE.DAT. THE INFORMATION
ACQUIRED PERTAINS TO THE DETAILS OF THE SHROUD BODY AS WELL AS THE FLOW
CONDITICKS.

#x» LATEST REVISION - 1 FEB 1987 ===+

ss* PARAMETER DESCRIPTICN *=s

OUTPUT: |
xJ - X COORDINATE OF THE JET NOZZLE POSITICH |
YJ - Y COORDINATE OF THE JET NOZZLE

Y1DOTO INITIAL SLOPE OF THE JET CENTERLINE
IEXIT- X COORDINATE OF THE SHROUD EXIT

DIFSLP DIFFUSER SLOPE

XDIFF- X COORDINATE OF THE START OF THE DIFFUSER
GAMMA-~ FREE-STREAM SPEED PARAMETER

Ui0 - JET INITIAL CENTERLINE VELOCITY

BO - INITIAL JET BALF-WIDTH

DUMP1- LOGICAL PARAMETER TO CONTROL OUTPUT

aaooagaooaogooocao00ago00Qaaaaa
L K JEE JEN X JEE BEK 2 K 2NE 2N IR JNR JEE R JEE JNE L SR JEE JER

CHEXSREEEBHEBDARRRBSSS SR SRS S ABSFE SRS A RRRRKREIRRREB SIS S AR SRR ARRSNRRRR SRS 4NN
(o

IMPLICIT REAL#8(A-H,0-Z)

LOGICAL DUMP1

READ(4,s) XJ

READ(4,%) YJ !
READ(4,*) Y1DOTO

READ(4,*) XEXIT

READ(4,#) DIFSLP i
READ(4,*) XDIFF
READ(4,) GAMMA
READ(4,#) U10

READ(4,s) BO

READ(4,*) DUMP1

RETURN |
END 1
|
\
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SUBROUTINE JETMAT(NJLS,NJLF,XJUS,NJUF,XCP,YCP,ALPHA,D,IND1,IND2,
1 PD,PE,PF,PG,PH,PPI,C,WORK,4,B, AMAT, BMAT, X,
2 ALWR,BLWR, AUPP,BUPP)
C

CHISS3 452X R AR MRS A SRS RSN ER RS R AN REE AR REEBRESEEFERFRRRR BB REAR RS REERE R RS RES

[ -
[ SUBROUTINE JETMAT COMPUTES THE INFLUENCE COEFFICIENTS FOR THE MATCHING =
C POINTS ALOEG THE JET BOUNDARIES. *
[ *
C *#ss LATEST REVISION - 23 APR 1987 »*¢ -
C *
C s+« PARAMETER DESCRIPTION **= *
C *
o} IRPUT: *
C NJLS - PANEL NUMBER OF THE BEGINNING OF THE LOWER JET BOUNDARY -
C NJLF - PANEL WUMBER OF THE END OF THE LOVER JET BOUNDARY *
C NJUS - PANEL NUMBER OF THE BEGINNING OF THE UPPER JET BOUNDARY *
C NJUF - PANEL WUMEER OF THE END OF THE UPPER JET BOUNDARY -
C XCP - VECTOR OF CONTROL POINT X COORDINATES .
C YCP - VECTOR OF CONTROL POINT Y COORDINATES -
C ALPHA - VECTOR CONTAINING THE SURFACE SLOPES *
cC D - VECTOR CONTAINING THE PANEL LENGTES *
C IND1 - VECTOR OF INDEX OF PANEL ADJOINING TO THE LEFT -
C IND2 - VECTOR OF INDEX OF PANEL ADJOINING TO THE RIGHT *
C PD..PPI- SOURCE PARABOLIC FIT COEFFICIEBRTS *
c ¢ - VECTOR OF SURFACE CURVATURE COEFFICIEETS .
C WORK - WORK SPACE VECTOR -
C 4 - WORK SPACE VECTOR *
C B = WORK SPACE VECTOR »
C AMAT - MATRIX OF X COMPONENT IRDUCED VELOCITIES *
C BMAT - MATRIX OF Y COMPONENT INDUCED VELOCITIES *
c - BUMBER OF PANELS =
C -
C CUTPUT: *
C ALWR - MATRIX OF U-VELOCITY INFLUENCE COEFFICIENTS FOR THE LOWER BOUNDARY »
C BLWR - MATRIX OF V-VELOCITY INFLUENCE COEFFICIENTS FOR THE LOWER BOUNDARY =
C AUPP - MATRIX OF U-VELOCITY INFLUENCE COEFFICIENTS FOR THE UPPER BOUNDARY =
C BUPP - MATRIX OF V-VELOCITY INFLUENCE COEFFICIENTS FOR THE UPPER BOUNDARY »
Cc

[T T PP T
Cc
IMPLICIT REAL*8(A-E,0-2)
DIMERSION XCP{N),YCP(N),ALPHA(N),D(X),PD(¥),PE(N),PF(N),PG(N),
PH(N) ,PPI(N),C(N) ,IED1(N) ,IND2(N) ,WORK(8+N),
ACE) ,B(N) ,AMAT(N, D) ,BMAT(N, D),
ALWR(EJLF-NJLS+1,¥) ,BLWR(NJLF-NJLS+1 1),
AUPP(RJUF-XJUS+1,X) ,BUPP(NJUF-KJUS+1,¥)

W N -

ss% AREA15 IS SHARED WITH LWRVLC, ONEJET, AND VLCJET ==
*s+ AREA16 IS SHARED WITH UPPVLC, ONEJET, AND VLCJET ##*»

aaoa

COMMON /AREA15/ XL(100),YL(100),UL(100),VL(100),SPLEUL(100,3),NL
COMMON /AREA16/ XU(100),YU(100),UU(100) ,VU(100) ,SPLEUU(100,3) ,MU

s&x CALCULATE AND STORE INFLUENCE COEFFICIENTS FOR THE LOWER ##»
*=*s JET BOUNDARY i

aaonan

NL=RJLF-NJLS+1

Q

DO I=NJLF,RBJLS,-1




APPENDIX B. COMPUTER CODE

aoaaoaaoaa

aaoaoQ

aaooaoan

(¢}

II=HJLF-I+1
XL(II)=XCP(I)
YL(II)=YCP(I)

DO J=1,8
ALWR(II,J)=AMAT(I,))
BLWR(II,J)=BMAT(I,J)

END DO

s+ USE A POINT SLIGHTLY OFF THE JET BOUNDARY WHEN COMPUTING hidd
#s* THE VELOCITIES BEAR THE CONTROL STATION TO AVOID THE SPIKE ##*»
*»+ CAUSED BY THE CURVATURE DISCONTINUITY Ll

IF(I.LT. (NIJLS+5)) THEN
YM=YCP(I)~(XCP(I)-XCP(NILS+5))#0.15D0
CALL INFLCE(XCP(I),YM,XCP,YCP,ALPHA,D,IND1,I¥D2,PD,PE,
PF,PG,PH,PPI,C,WORK,¥,A,B)
D0 J=1,X
ALWR(II,J)=ACI)
END DO

ERD IF
EED DO

s+ CALCULATE AND STORE THE INFLUENCE COEFFICIENTS FOR THE »¢=*
#s» UPPER BOUNDARY %

FU=NJUF-RJUS+1
DO I=RJUS,NJUF

II=I-RJUS+1
XU(ID)=XCP(I)
YU(II)=YCP(I)

DO J=1,¥
AUPP(IT,J)=AMAT(I,J)
BUPP(II,J)=BMAT(I,J)

END DO

*s+ USE A POINT SLIGHTLY OFF THE JET BOUEDARY WHEN COMPUTING Ll
s+« THE VELOCITIES NEAR THE CONTROL STATION TO AVOID THE SPIKE ##=x
*+s¢ CAUSED BY THE CURVATURE DISCONTINUITY Likhd

IF(I.GT.(NJUF-5)) THER
YM=YCP(I)+(XCP(I)-XCP(NJUF-5))#0.15D0
CALL INFLCE(XCP(I),YM,XCP,YCP,ALPEA,D,I¥D1,IND2,PD,PE,

1 PF,PG,PH,PPI,C,WORK,N,A,B)
DO I=1,X
AUPP(II,J)=A(J)
E¥D DO
END IF
END DO

#x» STANDARDIZE THE X COORDINATE VECTORS ==

DO I=1,HL
XU(I)=IL(I)
ENED DO
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RETURN
EED
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SUBROUTINE LWRVLC(X,U,UDOT)

C
CHEAR AR AS R AR RA B RS RB RS A EB RS ERE SRS EBEE DR SRR R AR SRR BRI AR BB R AR ER S

SUBROUTINE LWRVLC COMPUTES THE HORIZONTAL COMPONENT OF VELOCITY ON THE
LOWER SIDE OF TBE JET BOUEDARY.

«+* LATEST REVISION - 24 APR 1987 #»#»

.
*
*
*
.
*
*«s% PARAMETER DESCRIPTION #*#» *
INPUT: *

X - DISTANCE FROM THE JET ORIGIN *
.

*

*

*

.

OUTPUT
U - HORJZONTAL COMPONENT OF VELOCITY AT THE STATION X

UDOT - dU/dx AT THE STATION X

aoooagaoacaoaaao0aoaaoa

Ce 222532822320 R R XA AR RRR AR RN AR R AR RS R AR XA AR RRERERASR RN RA NSRRI R RS R ER AN

C
IMPLICIT REAL*8(A-H,0-2)

c
C #ss AREA1S IS SHARED WITH JETMAT, JETVLC AND OREJET s#s
C
COMMOF /AREA15/ XL(100),YL(100),UL(100),VL(100),SPLEUL(100,3),¥L
c
CALL INTRP(X,XL,UL,NL,SPLEUL,100,U,UDOT,D2UDX2,IER)
IF(IER.NE.0) THEN
WRITE(3,10) IER,X
10 FORMAT(’> ERROR IN LWRVLC: INTRP RETURNED WITH IER = ’,I3,
1 > X = ,F10.5)
STOP
END IF
c
RETURN

END
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SUBROUTINE OBEJET(NJLS,NJLF,¥JUS,NJUF,YJ,Y1D0TO,U10,B0,V0,
1 ALPHA,VN,¥,DUMP, NCALL,U0O, 40, XEND, Y1END,RES)
¢

CHES RIS AREESEEAR LRSS SR SRES BB VREIBIERER RS ASE KX SIS R R AR ARERRRAIR SRS SRS AR RNk

SUBROUTINE ONEJET PERFORMS THE VISCOUS CALCULATION WITHIN THE VISCOUS-
INVISCID INTERACTION REGION. THE DERIVATIVE OF U0 IS FOURD FROM THE
INVISCID SOLUTION VIA A SPLIBE FIT, AND IS USED AS A FORCING TERM IN
THE VISCOUS SOLUTION.

#s* LATEST REVISION - 24 APR 1987 »»s
#s% PARAMETER DESCRIPTION ses

INPUT:
NJLS PANEL NUMBER OF THE BEGIBNING OF THE LOWER JET BOUNDARY
NJLF PANEL BUMBER OF THE END OF THE LOWER JET BOUEDARY
NJUS PAYEL NUMBER OF THE BEGINNING OF THE UPPER JET BOUBDARY
NIJUF PANEL NUMBER OF THE EED OF THE UPPER JET BOUNDARY
YJ - JET INITIAL Y COORDINATE
YiDOTO JET CENTERLINE INITIAL SLOPE
U10 - JET INITIAL CENTERLINE VELOCITY
BO - JET INITIAL HALF-WIDTH
VO - FREE STREAM VELOCITY
ALPHA PANEL ORIENTATION ANGLES
VN - VECTOR CONTAINIEG THE NORMAL VELOCITIES T0 THE PABELS ALCNG THE JET
BOUNDARY IN THE VISCOUS-IBVISCID INTERACTION REGION
¥ - NUMBER OF PANELS
DUMP- LOGICAL PARAMETER FOR CONTROLLING OUTPUT
NCALL INDEX TO KEEP TRACK OF SUCCESSIVE CALLS TO ONEJET

OUTPUT:
UOO - VALUE OF UO AT THE JET EXIT
A0 - VALUE OF A AT THE JET EXIT
VE - UPDATED NORMAL VELOCITY VECTOR
IEED- X STATION AT WHICE THE VISCOUS-INVISCID MATCEING ENDS
Y1END VALUE OF Y1 AT XEND
RES ~ MAXIMUM RESIDUAL IN TBE VISCOUS-IBVISCID MATCHING

a0 a00000000000000
LR R S B AR X RE N B Y Y R I Y BE AR A 2R B R IR R R X B I N N N B S 2 2

(o T T T P P TP P
o

IMPLICIT REAL*8(A-H,0-2)

LOGICAL DUMP

DIMENSION S(7),SD(7),RD(6),W(7,9),C(24),ALPEA(E) ,VE(E)

COMMON UO,U1,P,A,B,Y1,ALP ‘

**¢ AREA1S5 IS SHARED WITH JETMAT, LWRVLC, AND VLCJET e==
*s* AREA16 IS SHARED WITH JETMAT, UPPVLC, AND VLCJET #*s

aaoaQ

COMMON /AREA15/ XL(100),YL(100),UL(100),VL(100),SPLNUL(100,3) 0L
COMMON /AREA16/ XU(100),YU(100),UU(100),VU(100) ,SPLRUU(100,3) ,NU

EXTERNAL DERIVi

IF(DUMP) THES
REVIND 9
REVIND 10
REWIND 11

END IF

REVIND 20
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c

M=7

W=7

TOL=.001D0

18D=1
c
c #s¢ OBTAIN THE INTERPOLATED VALUE OF THE HORIZONTAL COMPORENT OF »s
c s INVISCID VELOCITY AT THE JET NOZZLE e
c

X=XU(2)-.001

Q

aa

35

40

45

50

55

(2]

CALL UPPVLC(X,UUU,UUDOT)
CALL LWRVLC(X,ULL,ULDOT)
Uoo=yuu

A0=ULL-UUU

s«++ DEFINE INITIAL VALUES OF THE JET PARAMETERS #*#*

$(1)=U00
$(2)=U10
$(3)=0.0D0
S(4)=40
5(5)=B0
s(6)=YJ
$(7)=Y1D0OTO
RES=0.0

«s» ENTER LOOP TO MARCH THE VISCOUS EQUATIONS
BE=NJUF-NJUS+1

IF(DUMP) THEN

WRITE(9, 35)

FORMAT(/,25X,’> LOWER JET VELOCITIES *)

WRITE(S,40)

FORMAT(/,’ I Y UIRV VINV Vvis?’,
4 ’ VNOLD VEEEW RES?)

WRITE(10,45)

FORMAT(/,25X, * UPPER JET VELOCITIES )

WRITE(10, 40)

WRITE(11,50)
FORMAT(/,25X,’ JET SOLUTION ’)
WRITE(11,55)

FORMAT(/,? X Uo,uon0T U1,U1DOT P,PDOT’,
1 ) 4,ADOT B,BDOT  Y1,Y1DOT DYiD,D2Y1?)
EED IF
DO 10 J=2,NE

XEND =XU(J)
CALL DVERK(M,DERIV1,X,S,XEND,TOL,IND,C,MW,¥,IER)
IF(IED.LT.0.0R.IER.GT.0) THEN
WRITE(3,150) IND,IER
FORMAT(/,’ ERROR IN TWOJET, DVERK RETURNED WITH IND = ’,I5,
4 ' IER = ,I5)
STOP
END IF

«++ OBTAIN THE LOCAL DERIVATIVES OF THE JET PARAMETERS *#s

CALL DERIV1(M,XEND,S,SD)

WRITE(20,62) XEND,Y1
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62 FORMAT(2F10.5)
IF(DUMP) THEX
WRITE(11,60) XU(J),(S(II),II=1,7),XL(J),(SD(II),II=1,7)

60 FORMAT(8F10.5,/8F10.5,/)
END IF
c
c sss COMPUTE THE VERTICAL COMPONENT OF VELOCITY AT THE JET ###
c s++ BOUNDARY FROM THE VISCOUS SOLUTION e
c
DO I=1,5
RD(I)=SD(I)
EED DO
RD(6)=0.0DO
c
VVISU=V(RD, YU(J)) .
VVISL=V(RD,YL(J))
c
c #+s UPDATE THE SUCTION VELOCITY ON TEE LOWER JET BOUNDARY ##+
c
RL=VVISL-VL(J)
W1=1.0D0-0.8D0/DFLOAT(NE-1)*DFLOAT(J~1)
VEEWL= VE(NJLF-(J-1))+W1sRL
RESL=DABS (RL)
IF(RESL.GT.RES) RES=RESL
IF(DUMP) TEEN
WRITE(9,30) XL(J),YL{J),UL(J),VL(J),VVISL,VE(NJLF-(J-1)),
2 VEEWL,RL
30 FORMAT(8F10.5)
ERD IF
c
c #ss MAKE A CORRECTION TO THE LOCAL ENTRAINMENT VELOCITY »ss
c
VE(NILF-(J-1))=VNEWL
c
c »ss UPDATE TEE SUCTION VELOCITY ON THE UPPER JET BOUNDARY #s+
c
RU=VVISU-VU(J)
W1=-(1.0D0-0.8D0/DFLOAT(NE-1)*DFLOAT(J-1))
VEEWU= VE(EJUS+(J-1))+W1RU
RESU=DABS (RU)
IF(RESU.GT.RES) RES=RESU
IF(DUMP) TEHEN
WRITE(10,30) IU(J),YU(3),UU(J),VU(J),VVISU, VECRIUS+(J-1)),
x VEEWU,RU
END IF
c
c »x+ MAKE A CORRECTION TO THE LOCAL ENTRAINMENT VELOCITY s#»
c
VE(NIUS+(J-1)) =VEEWU
c
10  CONTINUE
c
Y1END=Y1
c
RETURN

END
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SUBROUTINE PERFOR(ALPHA,D,AMAT ,BMAT,Q,N,V0,BETA,
1 U10,U00, 40,B0,DFDRAG, NS, NF, §JLF ,NJUS,PHI)
C
(S D T T I

SUBROUTINE PERFOR COMPUTES THE TERUST AUGMEETATION RATIO IN TWO
IFDEPENDENT CALCULATIONS; THROUGH INTEGRATION OF TEE SURFACE PRESSURES AND
THROUGH USE OF THE BLASIUS INTEGRAL LAW. IN THE SURFACE PRESSURE BASED
CALCULATION, THE SUCTION ACTING ON BOTH THE EJECTOR SHROUD LEADING EDGE AND
THE PRIMARY JET NOZZLE ARE TAKEN INTO ACCOUNT.

#*+ LATEST REVISION - 2 FEB 1987 »»+
*#s+ PARAMETER DESCRIPTION »#»

INPUT:
ALPHA - VECTOR CONTAINING THE SURFACE SLOPES
D - VECTOR CONTAINING THE PAREL LEBGTHS
AMAT - MATRIX OF HORIZONTAL INDUCED VELOCITY COEFFICIENTS
BMAT - MATRIX OF VERTICAL INDUCED VELOCITY COEFFICIENTS

Q - VECTOR CONTAIEING THE SCURCE STRERGTHS
¥ - NUMBER OF PAERELS

Vo - FREE STREAM SPEED

BETA - ANGLE OF ATTACK

U10 - INITIAL JET VELOCITY

UOO - INITIAL JET EXTERNAL VELOCITY

A0 - INITIAL ASYMMETRY FACTOR

BO -~ INITIAL JET HALF-VIDTH

DFDRAG- DIFFUSER ASSOCIATED DRAG

§S - INDEX OF BEGINNING OF SHROUD NOSE
KF - INDEX OF END OF SHROUD NOSE

BJLF - INDEX OF FIRISE OF JET LOWER BOUNDARY
NJUS -~ IENDEX OF START OF JET UPPER BOUNDARY

OUTPUT:
PHI - THRUST AUGMENTATION COMPUTED USIEG TEE MOMENTUM TEEOREM

aQaaoaooao0o00o000a000000Q000a00000000000Q0
LR JEE JNE N R JNE IR JNE JNE JEE SR IR IR IR R X R R R I IR IR JEE NEE JEE K R I B 2R 2R BN )

o L T P P PP PP PP
(o}

IMPLICIT REAL+8(A-H,0-Z)

DIMENSICN ALPHA(CR) ,D(N),AMAT(N,B) ,BMAT(N,N),Q(K)

COMMON UO,U1,P,A,B,Y1 ,ALP

C
C #s+ AREA 18 IS SHARED WITH TWOJET b
C
COMMON /AREA18/ H,HDOT
EXTERNAL U,USQ
c
PI=3.1415926D0
C
UOX=V0+DCOS (BETA)
UOY=V0*DSIN(BETA)
[
Cc #+* COMPUTE THE PRIMARY JET MOMENTUM aE
C
RMJ=2.0D0*BO/ALP*(2.0D0/3.0D0O*U10*+2+2, ODO*U00*U10+U10%A0~
1 A0**2/4.0D0-U10+V0)
C
C
[ #*s INTEGRATE THE SURFACE PRESSURES ON THE EJECTOR SHROUD bl
C
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1o
Ot

SUM1=0.0DO
SUM2=0.0D0
X=0
NE=EF-NS+1
. R=1.0D0
DTH=-PI/DFLOAT(NN)
TH=3.0D0/2.0D0*PI+DTH/2.0D0
DO I=ES,NF
K=K+1
WT=2.0D0
IF(DMOD(DFLOAT(X),2.0D0).LT.0.1D0) WT=4.0D0
IF(X.EQ.1.0R.K.EQ.XN) WT=1.0DO

SUM3=0.0D0

SUM4=0.0D0

DO J=1,¥
SUM3=SUM3+AMAT(I,J)*Q(J)
SUM4=SUM4+BMAT(I,J1)*Q(J)

END DO

UU=SUM3+U0X
VV=SUM4+UOY
PR=0.5D0% (UU*#2+VV*s2-V0»s2)

SUM1=SUM1+PR+WT/3.0DO*DCOS (TH) *R+DTH
SUM2=SUM2+PR*D(I)»DSIN(ALPRA(I))
TH=TH+DTH

END DO

TS1=SUM1

TS2=SUM2

WRITE(21,5) TS1,TS2

FORMAT(//,” SHROUD THRUST SIMPSONS RULE, MIDPOINT RULE: ’,2F10.5)

#»s TETEGRATE THE SURFACE PRESSURE ON THE JET NOZZLE

aaoaow

SUM1=0.0D0

SUM2=0.0D0

NE=RJUS-BJLF+1

R=.05D0

DTH=-PI/DFLOAT(N¥NE)

TH=3.0D0/2.0DO*PI+DTH/2.0DO

k=0

DO I=FJLF,NJUS
K=K+1
¥T=2.0D0
IF(DMOD(DFLOAT(K),2.0D0).LT.0.1D0) WT=4.0D0
IF(K.EQ.1.0R.K.EQ.NN) WT=1.0DO

SUM3=0.0D0

SUM4=0.0D0

DO J=1,X
SUM3=SUM3+AMAT(I,J)*Q(J)
SUM4=SUM4+BMAT(I,J)*Q(J)

ERD DO

UU=SUM3+UOX
VV=SUM4+UOY
PR=0.5D0#* (UUs#2+VVe+2-V0%s2)

SUM1=SUM1+PR+WT/3.0D0*CO0S (TH) *R+DTH
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SUM2=SUM2+PR+D(I)+DSIB(ALPEA(I))
TH=TH+DTH
END DO
C
TC1=SUM1
TC2=SUM2
C
WRITE(21,6) TC1i,TC2
6 FORMAT(’ NOZZLE CAP THRUST SIMPSONS RULE, MIDPOINT RULE: ’,2F10.5)
C
TAUX=TS1+TC1
[
Cc s+« COMPUTE THE MOMEETUM FLUX AT THE EJECTOR EXIT ek
[
ETAH=3.0D0
TP=BO/ALP* ( (UOO##*2+U00* A0+A0*#2/2.0D0-VD##2)«ETAH-
1 2.0D0#* (UO*ETAH+DL0OG(2.0D0)/2.0DO*4)*V0)
PHISP=1.0DO+(TAUX+TP-DFDRAG) /RMJ
c
TGROSS=SIMS(USQ,0.0DO,H,30)-VO*SINS(U,0.0D0,H,30)
PHIMT=TGROSS /RMJ
C
TIED=TGROSS- (RMJ+TP) +DFDRAG
C
WRITE(21,10) RMJ,TGROSS,TAUX,TIND,DFDRAG,PHISP,PHIMT
10 FORMAT(//,’ JET MOMENTUM = ’,Fi0.5,
1 ' EXITING MOMEXTUM = ’,F10.5,/,
2 * INDUCED THRUST COMPUTED FROM SURFACE PRESSURES = ’,F10.5,/,
3 ’ INDUCED TERUST COMPUTED FROM MOMENTUM THEOREM = ’,F10.5,/,
4 ° PRESSURE DRAG ASSCCIATED WITH THE DIFFUSER = ’,F10.5,/,
4 > THRUST AUGMENTATION RATIO FROM SURFACE PRESSURES = ’,F10.5,/,
S ° THRUST AUGMENTATION RATIO FROM MOMENTUM THEOREM = ’,F10.5)
[
PHI=PHINT
[
RETURN

ERD
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SUBROUTINE TWOJET(XEXIT,XBEGIN,DUMP,PEXIT,DFDRAG,IER)

Cc
[ T L P T T T T T YY
C =
C SUBROUTINE TWOJET MARCHES THE VISCOUS SOLUTION WITHIR THE CHANNEL BEYORD =
C THE MATCHING REGION. ° *
[ *
C  #s» LATEST REVISION - 24 APR 1987 ##» *
Cc *
C #s» PARAMETER DESCRIPTION #»+ *
C *
Cc IEPUT: *
C XEXIT - X COORDINATE OF THE SHROUD EXIT *
C XBEGIN¥ - X COORDIFNATE TO START THE MARCHING -
C DUMP - LOGICAL PARAMETER USED TO CONTROL OUTPUT *
(o *
(o} OUTPUT: *
C PEXIT - STATIC PRESSURE COMPUTED BY THE VISCOUS SOLUTION AT THE EXIT -
C DFDRAG - DRAG ASSOCIATED WITH THE DIFFUSER *
C 1IER - ERROR PARAMETER: O FOR NORMAL EXECUTION, 1 FOR ERROR -
C -
o L L N T T T YT T T T
(o}

IMPLICIT REAL+8(A-H,0-2)

LOGICAL DUMP

DIMENSION S(7),SD(7),¥(7,9),C(24)

COMMOF UO,U1,P,A,B,Y1,ALP
[
C +s» ERROR IS SHARED WITH DERIV2 *%
Cc s+ AREA 18 IS SHARED WITH PERFOR Lidd
Cc #s+ AREA 21 IS SHARED WITH DUCAUG AND DERIV2 TS
[

COMMOE /ERROR/ IERROR

COMMO¥ /AREA18/ H,HDOT

COMMON /AREA21/ DIFSLP,XDIFF
(o}

EXTERNAL DERIV2,USQ,U
C

IF(DUMP) REWIND 12
c

IERROR=0
C
[+ ss% INITIALIZE PARAMETERS FOR TEE DVERK ROUTINE LEd
(o

M=7

Mu=7

TOL=1.D-4

IND=1
Cc
Cc «*xs DECODE THE S VECTOR SO THAT THE VALUES MAY BE SEET IN COMMOE  *»s
[

S$(1)=U0

$(2)=U1

S(3)=p

S(4)=a

S$(5)=B

$(6)=Y1

$(7)=0.0D0
[

*ss COMPUTE THE STARTING MOMENTUM AND MASS FLUX

aQa

ek
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RMJ1=SIMS(USQ,0.0D0,2.0D0,100)+2.0DO*P
RMDOT1=SIMS (U, 0.0D0,2.0D0,100)

c
IF(DUNP) THEN
WRITE(12,50) RMJ1,RMDOT1
50 FORMAT(/,25X,> JET IN CHANNEL SOLUTION ’,/,
1 > INITIAL JET MOMENTUM = ’,F10.5,’ INITIAL MASS = 7,
2 F10.5)
WRITE(12,55)
55 FORMAT(/,? X UO,UODOT  U1,UiDOT  P,PDOT’,
1 ’ A,ADOT B,BDOT  Y1,Y1DOT ?)
END IF
c
c »+s INITIALIZE PARAMETERS FOR THE INTEGRATION OF THE VISCOUS EQS. %
c
DX=0.5D0
DIST=XEXIT-XBEGIN
BPTS=NINT(DIST/DX)
DX=DIST/DFLOAT (BPTS)
X=XBEGIN
PSTART=P
HSTART=2.0DO
c
c »++ ENTER LOGP TO MARCH THE VISCOUS EQUATIONS o
c
DO I=1,NPTS
XEND=X+DX
CALL DVERK(M,DERIV2,X,S,XEED,TOL,IND,C,M¥,¥,IER)
IF(IERRDR.EQ.1) THEN
1ER=1
RETURN
ERD IF
IF(IND.LT.0.0R.IER.GT.0) THEN
WRITE(3,150) IED,IER
150 FORMAT(/,’ ERROR I TWOJET, DVERK RETURNED WITH IND = ’,IS,
x > IER = ?,I5)
TER=1
RETURN
END IF
c
c
IF(DUMP) THEN
CALL DERIV2(M,X,S,SD)
WRITE(12,60) X,(S(J),J=1,6),X,(5D(J),J=1,6)
60 FORMAT(7F11.5,/,7F11.5,/)
END IF
c
END DO
c
c sss STORE TEE EXIT PRESSURE AND COMPUTE THE DIFFUSER PRESSURE DRAG ###
c
PEXIT=P
DFDRAG=S(7)~ (P-PSTART) +ESTART
c
c »+¢ COMPUTE THE FINAL MOMENTUM AND MASS FLUX rxe
c

RMJ=SIMS(USQ,0.0D0,H,100)+P*HSTART+DFDRAG
RMDOT=SINS(U,0.0D0,H,100)
IF(DUMP) THEN
WRITE(12,70) RMJ,RMDOT
70 FORMAT(? FINAL MOMENTUM = ’,F10.5,° FINAL MASS = ’,F10.5)
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END IF
«x» IF MOMENTUM IS NOT CONSERVED WRITE AN ERROR MESSAGE

ERR=(RMJ-RMJ1) /RMJ1
IF(DABS{ERR) .GT.5.D-2) THEN
WRITE(3,80)
FORMAT(?’ ERROR IN TWOJET: SINGULARITIES IN CHANNEL SOLUTION’)
IER=1
RETURN
EBED IF

IER=0

RETURN
END

b2 2
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FUBCTION U(Y)
C
(o e T T R Y Y T e

FUNCTION U COMPUTES THE JET VELOCITY

ss» LATEST REVISION - 24 APR 1987 =#»

*#s» PARAMETER DESCRIPTION ###
INPUT:
Y - DISTANCE FROM THE JET CENTERLINE
OUTPUT:
U - HORIZONTAL COMPOBENT OF VELOCITY

aaoaoo0a0aoa0ao0a0
LR R N R BE BE 2K BN B J

Ct“““"“““‘“‘.‘#.‘t“““.‘#‘tl.‘.t'““‘-“““‘..t“““t..““‘.t““
C

IMPLICIT REAL#8(A-H,0-2)

COMMOXE UO,U1,P,A,B,Y1,ALP

ARG1=ALP#(Y+Y1)/B
ARG2=ALP*(Y-Y1)/B
T1=DTANH(ARG1)
T2=DTANE(ARG2)
515Q=1.0D0~T1s#2
$250Q=1.0D0-T2s*2

U=UO+4/2.0DO*(T1-T2)+U1=(51SQ+525Q)

RETURN
END
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1\
[RV]

SUBROUTINE UPPVLC(X,U,UDOT)
[
[ T Ly T T T TR LTt

SUBROUTIBE UPPVLC COMPUTES THE HORIZONTAL COMPONENT OF VELOCITY OF THE
UPPER SIDE OF THE JET BOUNDARY.

#s+ LATEST REVISION - 24 APR 1987 ##»

s+ PARAMETER DESCRIPTION #»ss
IRPUT:
X - DISTANCE FROM THE JET ORIGIN
OUTPUT
i} - HORIZOSTAL COMPONENT OF VELOCITY AT THE STATION X
UDOT -~ dU/dx AT TEE STATION X

s N E+EsEsEtEsEs N+ EsErETNe]
LR IR R IR R B B K R R K R J

CHERRR RS £ 40 ERARRARBSRRE SR AR ERAASEBRRRUBHESRP RSB EASIEBSARRA SIS RS SFRASRIB AR SRR R
[
IMPLICIT REAL#*8(A-H,0-Z)

c
c s++ AREA16 IS SHARED WITH JETMAT, VLCJET, AND ONEJET ==
c
COMMOE /AREA16/ XU(100),YU(100),UU(100),VU(100) ,SPLEUU(100,3),NU
c
CALL INTRP(X,XU,UU,BU,SPLNUU,100,U,UDOT, D2UDX2, IER)
IF(IER.NE.0) THER
WRITE(3,10) IER,X
10 FORMAT(? ERROR IN UPPVLC: INTRP RETURNED WITH IER = ’,I3,
1 » X = ?,F10.5)
STOP
END IF
c
RETURN

EED
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[ &)
[SV]
(SV]

FUECTION USQ(Y)
c

CHESABBAEREEENAIREAARNSREESEEERRFEEIN SR SRR AR ENERREBRBERRRARRRR N R RS KRR KRR RRR
FUNCTION USQ COMPUTES THE SQUARE OF THE JET VELOCITY
=+% LATEST REVISION - 24 APR 1987 ##»
INPUT:
Y ~ DISTANCE FROM THE JET CENTERLINE

OUTPUT:
usq - SQUARE OF THE JET VELOCITY

o000

-
]
*
*
*
#%+ PARAMETER DESCRIPTION #»s *
*
*
=
*
*
*

(ol L T T I T
[

IMPLICIT REAL*8(A-H,0-2)

COMMON UO,U1,P,A,B,Y1,ALP

c
c=U(Y)
UsQ=CsC

c
RETURN

EED
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FUNCTION V(RD,Y)

C

CHIMERSRARBESEESABRARI AR RESRASABRAR OSSR SRR REE AN RER AR SR ERRRABI KRS SRR R bR
[ *
C FUNCTIOR V COMPUTES THE VERTICAL COMPONENT OF THE JET VELOCITY *
Cc -
C #xs LATEST REVISION - 24 APR 1987 w#»s .
C *
C **% PARAMETER DESCRIPTICE #s*# *
C INPUT: *
C RD ~ VECTOR CONTAINING THE DERIVATIVES OF THE JET PARAMETERS *
cy - DISTANCE FROM THE JET CENTERLINE *
c OUTPUT: *
cv - VERTICAL COMPORENT OF VELOCITY *
Cc *

(W T L T T
C

IMPLICIT REAL*8(A-H,0-Z)

DIMENSIOE RD(6)

COMMON UO,U1,P,A,B,Y1,ALP

CONST=ALP/B
ETA=CONST*(Y-Y1)
T=DTANH(ETA)
DLC=DLOG(DCOSH(ETA))
UODOT=RD(1)
U1DOT=RD(2)
ADOT=RD(4)
BDOT=RD(S)

V=-ETA/CONST+UODOT
-T/CONST+U1DOT
+0.5D0/CONST* (DLC-ETA) *ADOT
+1.0DO/ALP#* (~U1sETA*T#+*2-(U1+A/2.ODO*ETA)*T+0.5D0*A*DLC+
U1+ETA) #BDOT

w W N e

RETURN
END
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SUBROUTIRE VLCJET(ALWR,BLWR,AUPP,BUPP,Q,NJLS ,NJLF,BJUS,NJUF,
1 ¥,V0,BETA,PATH)
[
CHEESRAERRERAARERRRNRSEARSERRRERABERAEESIREARARRE RSB RN RES AR SR ARRRAR KRR RS RS

SUBROUTINE VLCJET COMPUTES VALUES OF THE VELOCITY COMPONENTS AT THE
LOWER AND UPPER SIDES OF THE JET BOUNDARY.
SPLINE FITS ARE MADE TO THE VELOCITY COMPONENTS AND THE RESULTS SENT TO
SUBROUTIRES UPPVLC AED LWRVLC VIA COMMON BLOCKS.

LATEST REVISION 24 APR 1987
#+* PARAMETER DESCRIPTION s#+

INPUT:
ALWR - INFLUENCE COEFFICIENTS FOR U-VELOCITY ALONG THE LOWER BOUNDARY
BLWR - INFLUENCE COEFFICIENTS FOR V-VELOCITY ALONG TEE LOWER BOUNDARY
AUPP ~ INFLUENCE COEFFICIENTS FOR U-VELOCITY ALONG THE LOWER BOUEDARY
BUPP ~ INFLUENCE COEFFICIENTS FOR V-VELOCITY ALONG TEE LOWER BOUEDARY
Q - VECTOR OF SOURCE STRENGTHS
BJLS - PANEL NUMBER OF THE BEGINNING OF THE LOWER JET BOUNDARY
BJLF - PANEL NUMBER OF THE END OF THE LOWER JET BOUNDARY
NJUS - PANEL NUMBER OF THE BEGIBNIEG OF THE UPPER JET BOUNDARY
BJUF - PANEL NUMBER OF THE ENED OF THE UPPER JET BOUNDARY
)| - NUMBER OF PABELS
Vo - FREE STREAM SPEED
BETA -~ ANGLE OF ATTACK

OUTPUT:
PATM - UPSTREAM AMBIENT PRESSURE

SENT VIA COMMON BLOCK IN AREA15

- VECTOR CONTAINING TEE ABSCISSA OF THE STATIONS AT WHICH THE

VELOCITIES ARE CALCULATED

-~ VECTOR CONTAINIBG THE ORDINATES OF THE STATIONS AT WHICH THE

VELOCITIES ARE CALCULATED

VECTOR CONTAINING THE HORIZONTAL COMPONENT OF VELOCITY

- VECTOR CONTAINING THE VERTICAL COMPONERT OF VELOCITY

SPLEUL- SPLINE FIT PARAMETERS FOR TEE U COMPOKENT OF VELOCITY AT THE JET
LOWER BOUENDARY

58 8 FE

SENT VIA COMMON BLOCK IN AREA16

XU =~ VECTOR CONTAINING THE ABSCISSA OF THE STATIORS AT WHICH THE
VELOCITIES ARE CALCULATED
YU - VECTOR CONTAINING THE ORDINATES OF THE STATIONS AT WHICH THE
! VELOGCITIES ARE CALCULATED
w - VECTOR CONTAINIEG THE BORIZONTAL COMPONENT OF VELOCITY
vu = VECTOR CONTAINING THE VERTICAL COMPONENT OF VELOCITY

SPLNUU- SPLINE FIT PARAMETERS FOR THE U COMPONENT OF VELOCITY AT THE JET
LOWER BOUNDARY

o000 o0000000O000000O00O00a00a000000000
L3R S Y Y TR AR B B K TN Y IR JEE R R R JEE NN JEE 2R IR R BE 2R IR R R R 2N 2R R IR JEE JEE JNE JER JEE JEE R B B K R IR R R

(R L Ty
C

IMPLICIT REAL#*8(A-H,0-2)

DIMENSION ALWR(NJLF-BJLS+1,N) ,BLWR(NJLF-NJLS+1,¥),

1 AUPP(NJUF-NJUS+1,N) ,BUPP(NJUF-NJUS+1,X) ,Q(W)
c
c *#+ AREA15 IS SHARED WITH JETMAT, LWRVLC, AND ONEJET hihd
C *++ AREA16 IS SHARED WITH JETMAT, UPPVLC, AND ONEJET hihd
c

COMMON /AREA15/ XL(100),YL(100),UL(100),VL(100),SPLNUL(100,3),5L
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COMMON /AREA16/ XU(100),YU(100),UU(100),VU(100),SPLEUU(100,3),8U

#*% CALCULATE AND STORE VELOCITY COMPONENTS FOR THE LOWER ##=
#ss JET BOUNDARY 5

FL=NJLF-NJLS+
DO I=NILF,NJLS,-1
IT=NJLF-I+1
SUNM1=0.0D0
SUNM2=0.0D0
DO I=1,X
SUM1=SUM1+ALWR(II,J)*Q(J)
SUM2=SUM2+BLWR(II,J)*Q(J)
END DO
UL(II)=V0+DCOS (BETA) +SUM1
VL(II)=VO+DSIN(BETA)+SUM2
EED DO

#++ SPLINE FIT THE LOWER VELOCITY COMPONENTS #sx»

CALL IQESCU(IL,UL,NL,SPLNUL,100,IER)
IF(IER.¥E.O) THEX

WRITE(5,50) IER

STOP
END IF

s#¢s CALCULATE AND STORE VELOCITY COMPOBENTS FOR THE UPPER #ae
sas JET BOUNDARY e

U=RJUF-BJUS+1
DO I=NJUS,NJUF
II=I-NJUS+1
SUM1=0.0D0
SUM2=0.0D0
DO J=1,¥
SUM1=SUM1+AUPP(II,J)*Q(J)
SUM2=SUM2+BUPP(II,J)*+Q(J)
END DO
UUCII)=v0+DCOS (BETA) +SUN1
VU(II)=VO*DSIN(BETA)+SUM2
END DO

¢+ SPLINE FIT THE UPPER VELOCITY COMPONENTS =#»
CALL IQHSCU(IU,UU,NU,SPLWUU,100,IER)
IF(IER.NE.O) THEN

WRITE(5,50) IER

STOP
END IF

s+ CALCULATE THE UPSTREAM ATMOSPEERIC PRESSURE ##+*
PATM=0.5D0s (UU(2) »+2-V0»*2)

FORMAT(> ERROR IN JETVLC, CALL TO IQHESCU RETURNED WITH °
’IER = ?,I5)

RETURN
END
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B.3.3 Panel Method Library PAN2LIB

SUBROUTINE GEOM(XBOD,YBOD,ZETA,CX,CY,WORK,N,XCP,YCP,ALPHA,D,
1 IND1,1IKD2,PD,PE,PF,PG,PH,PPI,C)
c
[ T Il
C
C SUBROUTINE GEOM COMPUTES THE SURFACE ELEMENT LEEGTH, RADIUS OF
CURVATURE, ORIENTATION IN SPACE, AND PARABOLIC FIT COEFFICIENTS

Q

#»* LATEST R: .SICN - 28 JAN 1987 »*»

*«*+ PARAMETER DESCRIPTIOEN »»#

INPUT:
XBOD - VECTOR OF BODY X COORDINATES
YBOD - VECTOR OF BODY Y COORDINATES
ZETA - WORK SPACE VECTOR FOR THE SPLINE FIT
CcX - WORK SPACE MATRIX FOR THE X SPLINE FIT COEFFICIEETS
cY - WORK SPACE MATRIX FOR THE Y SPLIBE FIT COEFFICIERTS
WORK - WORK SPACE MATRIX FOR PERIODIC SPLINE FITS
¥ - NUMBER OF SURFACE ELEMENTS
OUTPUT:
XCP - VECTOR OF CONTROL POINT X COORDINATES
YCP - VECTOR OF CONTROL POINT Y COORDINATES

ALPHA - VECTOR OF INVERSE TAEGENTS OF THE SLOPE OF EACH PANEL
(ORIENTATION ABGLE)

D - VECTOR CONTAINING THE LENGTHS OF EACH PANE
IND1 - VECTOR OF INDEX OF THE PANEL WHICH ADJOINS TO THE LEFT
IND2 - VECTOR OF INDEX OF THE PAKEL WHICHE ADJCINS TO THE RIGHT

PD. .PPI- PARABOLIC FIT COEFFICIENTS
VECTOR OF SURFACE CURVATURE COEFFICIENTS

O
)
LR BN L R R EE K JEE BEE SN BEE JEE BEE JEE IR 2EE ZEE R JER R IR R JNE JEE NN B NN 1

aaogooaoaoaono0a0ao0aocno00o0a00000000000

[ T D PP PP
C

IMPLICIT REAL#8(A-E,0-Z)

LOGICAL PERDT

DIMENSION XBOD(N+1),YBOD(N+1),ZETA(E+1),CX(),3),CY(N,3),

1 WORK(6+ (N+1)),XCP(N),YCP(N) ,ALPBACN) ,D(¥) ,IND1(N),
2 IND2(N) ,PD(X) ,PE(K) ,PF(N) ,PG(N) ,PE(N) ,PPI(N),C(X)
c
PI=3.141592654D0
c
c #++ CHECK FOR PERIODIC GEOMETRY s«
c
XDIFF=XBOD(N+1)-XBOD(1)
YDIFF=YBOD(N+1)-YBOD(1)
IF(DABS(XDIFF) .LT.1.E-3.ARD.DABS (YDIFF) .LT.1.E-3) TEEN
PERDT=.TRUE.
XBOD(N+1)=XBOD(1)
YBOD(N+1)=YBOD(1)
ELSE
PERDT=.FALSE.
EED IF
c
DO I=1,¥
c

DX=XBOD(I+1)-XBOD(I)
DY=YBOD(I+1)-YBOD(I)
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[EV]
8]

-~1

C #sx COMPUTE TEE PANEL LENGTH s»s
[+
D(I)=DSQRT(DXs#2+DY#»2)
[
Cc *s» COMPUTE THE PANEL ORIENTATION ANGLE #»»
(o}
IF(DABS(DX).LT.1.D-6) THEN
IF(DY.GT.0.0DO) THEN
ALPHA(I)=PI/2.0D0
ELSE
ALPBEA(I)=-PI/2.0DO
EED IF
ELSE
ALPEA(I)=DATAR(DY/DX)
IF(DY.LT.0.0DO.AND.DX.LT.0.0D0) ALPHA(CI)=ALPHA(I)-PI
IF(DY.GE.0.0DO.AND.DX.LT.0.0D0O) ALPHA(I)=ALPHA(I)+PI
END IF
c
END DO
C
[ »++ SPLINE FIT THE BODY COORDINATES AS A FUNCTION OF THE ##»
C »+«+ PANEL LENGTH s
C
ZETA(1)=0.0D0O
DO I=2,E+1
ZETA(I)=ZETA(I-1)+D(I-1)
END DO
[
IF(PERDT) THEN
CALL ICSPLN(ZETA,XBOD,N+1,CX,N,WORK,IER)
IF(IER.NE.O) THER
WRITE(3,7) IER
7 FORMAT(® ERROR IN GEOM, ICSCCU RETURKED WITH IER = ’,I4)
STOP
EBD IF
CALL ICSPLN(ZETA4,YBOD,N+1,CY,N,WORK,IER)
IF(IER.BE.O) THEN
WRITE(3,7) IER
STOP
END IF
ELSE
CALL ICSCCU(ZETA,XBOD,¥+1,CX,N,IER)
IF(IER.NE.O) THEX
WRITE(3,7) IER
STOP
END IF
CALL ICSCCU(ZETA,YBOD,N+1,CY,N,IER)
IF(IER.NE.O) THEN
WRITE(3,7) IER
STOP
END IF
EXD IF
C
DO I=1,3
[
c ss» FIND THE CONTROL POINT LOCATION AND SURFACE DERIVATIVES ###
[

Z=0.5D0* (ZETA(I)+ZETA(I+1))
CALL INTRP(Z,ZETA,XBOD,¥+1,CX,N,XX,DXDZ,D2XDZ2,IER)
IF(IER.RE.O) THEN

WRITE(3,20) IER,Z
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FORMAT(’ ERROR IN GEOM: INTRP RETURNED WITH IER = ’,I3,
» X = 7,F10.5)
STOP
END IF
CALL INTRP(Z,ZETA,YBOD,N+1,CY,N,YY,DYDZ,D2YDZ2,IER)
IF(IER.NE.0) THEN
WRITE(3,20) IER,Z
STOP
END IF
XCP(I)=XX
YCP(I)=YY
C(1)=(DXDZ+D2YDZ2-DYDZ#D2XDZ2)/(DXDZ*#2+DYDZs»2) #+1 .5DO0

s++ COMPUTE PARABOLIC FIT COEFFICIENTS s*=

L1=I-1

L2=I

L3=I+1

IF(PERDT.AND.I.EQ.1) Li=N

IF(PERDT.AKD.I.EQ.¥) L3=1

IF(.BOT.PERDT.AND.(I.EQ.1.0R.I.EG.N)) THEN
PD(L2)=0.0DO
PE(L2)=0.0D0
PF(L2)=0.0D0
PG(L2)=0.0D0
PE(L2)=0.0DO
PPI(L2)=0.0D0

ELSE
A=0.5D0* (D(L1)+D(L2))
B=0.5D0=(D(L2)+D(L3))
PD(L2)=~B/(A*(A+B))
PE(L2)=(B~4)/(A*B)
PF(L2)=a/(B*(A+B))
PG(L2)=2.0D0/(A*(A+B))
PH(L2)=-2.0D0/(4+B)
PPI(L2)=2.0D0/ (B+* (A+B))

END IF

END DO
#s+ FILL THE INDEX ARRAYS ##»

DO I=1,X
INDI(I)=I-1
IED2(I)=I+1

EED DO

IF(PERDT) THEX
IED1(1)=N
ID2(H)=1

ELSE
I18D2(N)=0

END IF

RETURN
END
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SUBROUTIBE GETDAT(NUNIT,XBOD,YBOD,VN,¥,VO,BETA)
[
CHEBREABEERRUESFRRRASSEERRRRREARREARNEERERAERRASRRRABRARER SRR RSRARRERERRES KN

SUBROUTINE GETDAT READS THE DATA FILE BODY.DAT TO OBTAIN THE COORDINATES
OF THE SHROUD GEOMETRY AS WELL AS THE NORMAL VELOCITY AT EACH PANEL.

s+ LATEST REVISION - 28 JAN 1987 #»»
#s& PARAMETER DESCRIPTION ##»

INPUT:
NUFIT - LOGICAL UNIT FOR DATA INPUT

THE INPUT IS THE DATA FILE BODY.DAT WHICH CONTAINS THE X AND Y COORDIFATES
ALONG WITH THE TRANSPIRATION VELOCITY FOR EACH PANEL

OUTPUT:
XBOD - VECTOR COBTAINING THE ABSCISSA OF THE BODY POIETS
YBOD - VECTOR CONTAINIEG THE ORDINATES OF THE BODY POINTS
vE - VECTOR OF PANEL TRANSPIRATION VELOCITIES
| - FNUMBER OF SURFACE ELEMENTS (NUMBER OF BODY POINTS - 1)

aocooooaaaoan0o0000000aQ0aa00
R XK R R R R R REEREREREERENEN

L T T T N T P T PP TS
C

IMPLICIT REAL#*8(1-H,0-2)

DIMENSION XBOD(1),YBOD(1),VE(1)

c
REWIND NUNIT
REWIND 2
c
DO I=1,500
READ(NUNIT,*,END=10) XBOD(I),YBOD(I),VN(I)
EED DO
10 ¥=I-2
c
READ(2,+) VO,BETA
c

RETURN
END
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SUBROUTINE INFIBRV(XCP,YCP,ALPHA,D,IND1,IND2,PD,PE,PF,PG,PH,PPI,C,
1 WORK,A,B,VW,N, AMAT ,BMAT ,WINV)

C

(L e T e R P Y T LTI T P I e 2y
[

(o} SUBROUTINE INFINV COMPUTES THE INVERSE OF THE AERODYNAMIC COEFFICIENT =+
C MATRIX. *
Cc *
C  »#s LATEST REVISION - 28 JAN 1987 #»#s .
(o} -
[of #+% PARAMETER DESCRIPTION *%» *
C .
[ INPUT: *
C XCP - VECTOR CONTAINING THE CONTROL PCINT X COORDINATES *
C YCP - VECTOR CONTAINING THE CONTROL POINT Y COORDINATES *
C ALPHA - VECTOR CONTAINING THE SURFACE SLOPE ANGLES FOR EACH PANEL *
cC D -~ VECTOR CONTAINING THE PANEL LENGTHS .
C IND1 - VECTOR OF PANEL INDEX WHICH ADJOINS TO THE LEFT *
C 1I8D2 - VECTOR OF PAKEL INDEX WHICH ADJOINS TO THE RIGHT *
C PD..PPI PARABOLIC FIT COEFFICIENTS -
c C - VECTOR OF SURFACE CURVATURE COEFFICIENTS *
C WORK - WORK SPACE MATRIX -
C 4 - WORK SPACE VECTOR TO HOLD X VELOCITY INFLUENCE COEFFICIENTS -
cC B - WORK SPACE VECTOR TO HOLD Y VELOCITY INFLUENCE COEFFICIENTS *
c WV - WORK SPACE MATRIX TO TEMPORARILY HOLD THE INFLUERCE COEFFICIENTS *
cC 5 - NUMBER OF PANELS *
C *
C OUTPUT: »
C AMAT - MATRIX IF HORIZONTAL INDUCED VELOCITIES «
C BMAT - MATRIX OF VERTICAL INDUCED VELOCITIES *
C WIEV - INVERSE OF THE AERODYNAMIC INFLUENCE COEFFICIENT MATRIX .
C -
Cida b s st RB AR AL SRR S XREERASE IR R X RERERARB RN R BRRRRRARERRENRRRRRRRER S

c
IMPLICIT REAL#8(A~H,0-2)
DIMENSION XCP(E),YCP(XN),ALPEA(N),D(N),PD(X),PE(N) ,PF(N),PG(N),
1 PR(N) ,PPI(E),C(N) ,WINV(E,¥) ,W(N,N),WORK(8+E) ,TUD1(N),
2 IND2(X) ,ACH) ,B(N) ,AMAT(N,H) ,BMAT(N,X)
c
c #++ GENERATE THE AERODYNAMIC INFLUENCE COEFFICIENT MATRIX #s=
c
DO I=1,N
X=XCP(I)
Y=YCP(I)
CALL INFLCE(X,Y,XCP,YCP,ALPHA,D,IND1,IND2,PD,PE,PF,PG,PH,
1 PPI,C,VORK,N,1,B)
DO J=1,N
AMAT(I,1)=ACD)
BMAT(I,J)=B(J)
W(I,J)=B(J)*DCOSC(ALPEACT))-A(J)*«DSIN(ALPHA(I))
END DO
ESD DO
c
c »+s INVERT THE MATRIX USING LINVIF s#+
c
CALL LINVIF(W,N,¥,WINV,O0,WORK,IER)
IF(IER.EQ.129) THEN
WRITE(3,20)
20 FORMAT(’ ERROR IN INFINV, LINVIF FOUND A SINGULAR MATRIX ’)
STOP

ERD IF
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RETURE
END




APPENDIX B. COMPUTER CODE

SUBROUTIRE INFLCE(X,Y,XCP,YCP,ALPEA,D,I¥D1,IND2,

1
C

PD,PE,PF,PG,PH,PPI,CC,¥,N,A,B)

[ 2 L T T T L R R P T T

[

Q

SUBROUTIBE INFLCE COMPUTES THE AERODYNAMIC INFLUENCE COEFFICIERTS FOR

USE IN THE HIGHER ORDER PANEL METHOD.

*s% LATEST REVISION - 28 JAN 1987 x#=*

*+¢+ PARAMETER DESCRIPTION #s=

INPUT:

P

<
]

xxp -
YCP -
ALPHA -

IND1 -
IND2 -
PD. .PPI

- o
[ |

X COORDINATE AT WHICH THE INFLUENCE COEFFICIENT IS TO BE CALCULATED
Y COORDIEATE AT WEICE THE INFLUENCE COEFFICIENT IS TO BE CALCULATED
VECTOR OF CONTROL POINT X COORDINATES
VECTOR OF CONTROL POIBT Y COORDINATES

VECTOR OF PANEL LENGTHS

VECTOR QOF PANEL INDEX WHICH ADJOINS TO THE LEFT

VECTOR OF PANEL INDEX WHICH ADJOINS TO THE RIGHT

PARABOLIC FIT COEFFICIENTS

VECTOR OF SURFACE CURVATURE COEFFICIERTS

WORK SPACE FOR TEMPORARILY STORING THE INDUCED VELOCITY COMPONENTS
EUMBER OF PANELS

OUTPUT:

o b

¢HNeNsEsEsEeNsEsNsEsEsEsNeEsEsEsEsErs RNt N2 K?)
o
]

VECTOR OF INFLUERCE COEFFICIENTS FOR THE X COMPONEET OF VELOCITY

*
*
*
*
*
.
*
*
-
*
*
=
*
VECTOR OF SURFACE SLOPES FOR EACH PANEL -
*
*
-
*
*
*
*
*
*
*
VECTOR OF INFLUENCE COEFFICIENTS FOR THE Y COMPONENT OF VELOCITY *

*

=

[of B R L L L T T T T T T e oY

C

IMPLICIT REAL*8(4-H,0-2)
DIMENSIOF XCP(¥),YCP(K),ALPEA(K) ,D(N),PD(N),PE(N),PF(N),PG(N),

1

PH(N) ,PPI(§),CC(N),IND1(¥),IND2(N),W(8, M) ,A(N),B(N)

PI=3.14159265D0

DO J=1,X

C=DCOS(ALPHA(D))
S=DSIN(ALPHA(J))

RX=X-ICP(J)
RY=Y-YCP(J)
RO=DSQRT(RX*#2+RY*#2)
IF(RO.EQ.0) THEN

EPS=1.D8

ELSE

EPS=D(J) /RO

EED IF
EPS2=EPS*#2

Q

IF(EPS.LT.7.5D-2) THEN

aoaoaa

**s USE APPROXIMATE FORMULAS IF THE FIELD POINT IS VERY FAR ###
#«+ AWAY FROM THE PANEL CONTROL POINT b

ALP=RX/RO
BET=RY/RO
AUX1=ALP+C+BET+*S
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AUX2=-ALPsS+BET+C

W(1,J)=2.0DO*EPS#ALP
W(2,3)=2.0DOsEPS*BET

. W(3,J)=EPS2/6.0D0* (2.0DO*ALP*AUX1-C)
W(4,1)=EPS2/6.0D0* (2.0D0O*BET*AUX1-S)
W(5,J)=EPS2/12.0D0=*(2.0DO*ALP*AUX2+S)
W(6,J)=EPS2/12.0D0#*(2.0DO*BET*AUX2-C)
W(7,J)=¥(1,1)/24.0D0
w(8,J)=W(2,J)/24.0D0

ELSE

XI=RX+C+RY*S
ETA=-RX+S+RY*C

Q

IF(EPS.LT.3.0D-1) THEN

*s+ USE ANOTHER SET OF APPROXIMATIONS IF THE FIELD POIET IS #*s=
s++ MODERATELY FAR AWAY FROM THE PANEL CONTROL POINT b

aQaoa

ALP=XI/RO

ALP2=ALP#*»*2

BET=ETA/RO

BET2=BET#*+2
AUX1=(ALP2/3.0D0-0.25D0)*EPS2
AUX2=(ALP2/3.0D0-1.0D0/12.0D0)*EPS2
AUX3=2.0D0=4LP2-1.0D0

AUX4=(8.0D0O* (ALP2-1.0DO0)*ALP2+1.0D0)+EPS2

VOX=2.0DO*ALP*EPS#*(1.0DO+AUX1)
VOE=2.0DO+BET*EPS* (1 .0DO+AUX2)

V1X=EPS2/6.0DO* (AUX3+1.5D-1+4UX4)
V1E=ALP*BET+EPS2/3.0D0#(1.0D0+0.3D0*AUX3+EPS2)
VCX=ALP+BET+EPS2/6.0D0* (1.0D0+0.9D0*AUX3+EPS2)
VCE=EPS2/12.0D0#((2.0DO*BET2-1.0D0)-7.5D-2+AUX4)
V2X=ALP*EPS/12.0D0#(1.0DO+1.8DO*AUI1)
V2E=BET+EPS/12.0D0*(1.0D0O+1.8D0*AUX2)

(2]

ELSE

#*+ USE THE EQUATIONS WITHOUT APPROXIMATIOF IF THE FIELD »s=
«++ POINT IS CLOSE TO THE PANEL CORTROL POINT L

aaaaon

II2=XI*»2

ETA2=ETA##2

DEL=D(J)

DEL2=DEL#2

R1SQ=(XI+0.5DO*DEL)»#2+ETA2

R2SQ=(XI-0.5DO*DEL)»#2+4ETA2

C1=DLOG(R1SQ/R2SQ)

REUM=ETA*DEL

DENONM=XI2+ETA2-0.25D0«DEL2

C2=2.0DO*DATAN(REUM/DEROM)

IF(DABS(RNUM) .LT.1.D-6.AND.DENONM.LT.0.0D0) THEN
C2=2.0D0O*PI

ELSE
IF(RNUM.GT.0.0DO. AND.DENON.LT.0.0D0) C2=C2+2.0DO*PI
IF(RNUM.LT.O0.0DO. AND.DENON.LT.0.0D0) C2=C2-2.0D0+PI

END IF

AUX1=ETA*C2+XI*C1
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AUX2=X1+*C2-ETA*C1

[
Vox=C1
VOE=C2
V1X=(AUX1-2.0DO*DEL) /DEL
V1E=AUX2/DEL
VCX=(-AUX2+0.5DOsXI+ETA+*(DEL*#3) /(R1SQ*R2SQ)) /DEL
VCE=(AUX1-DEL#*(1.0DO+( (XI2+ETA2) #*2-
1 0.25D0#(XI2-ETA2)*DEL2)/
(R1SQ+R2SQ) ))/DEL
V2X=(XI+#ETA*C2+0.5D0*(XI12-ETA2)*C1-XI*DEL) /DEL2
V2E=(0.5D0* (XI2-ETA2)*C2-XI+ETA*C1+ETA+DEL) /DEL2
C
END IF
(o
C #+% TRANSFORM TO THE GLOBAL COORDINATE SYSTEM ##»
C
W(1,J3)=VOX*C~-VOE*S
W(2,J)=VOX*S+VOE*C
W(3,J)=ViXsC-V1E*S
W(4,1)=V1X+S+V1EsC
W(5,J)=VCX*C-VCE*S
W(6,J)=VCX*S+VCE+C
W(7,J)=V2X*C-V2E*S
¥(8,))=V2X*S+V2E*C
c
ERD IF
c
END DO
c
[of
(o} *s+ COMPUTE THE INFLUENCE COEFFICIENTS *#=
[
DO J=1,¥
C
JM1=1ED1(J)
JP1=1§D2(D)
(o}
VXJ =W(1,J)+¥(3,))*PE(J)*D(J)+W(5,))*CC(J)*D(J)+
1 W(7,J3)s(PH(J)+CC(J)##2)*D(J)+s2
VY] =W(2,])+W(4,3)*PE(J)*D(J)+¥(6,3)+CC(J)*D(I)+
1 W(8,J)s(PH(J)+CC(J)#%2)*D(J) **2
IF(JM1.JE.O) THEN
VIIM1=W(3,IM1) *PF(JIN1)*D(IM1) +W(7,IM1)*»PPI(JM1)*D(IN1) »#2
VYIM1=W(4,I%1)«PF(IM1)#D(IM1) +W(8,IM1)+PPI (IM1)+D(JIM1) »#2
ELSE
VIJN1=0.0DO
VYJM1=0.0DO
END IF
IF(JP1.NE.0) TEEX
VIIP1=W(3,JP1)*PD(JP1)*D(JIP1)+W(7,IP1)*PG(JP1)*D(JP1) »=2
VYJP1=W(4,JP1)sPD(JP1)*D(JP1)+W(8,IP1)+PG(JP1)*D(JP1) s»2
ELSE
VXJP1=0.0DO
VYJP1=0.0DO
ENID IF
[
A(J)=VXJ+VXIM1+VXJP1
B(J)=VYJ+VYIM1+VYJP1
[

EED DO
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X
<t

RETURN
EED
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SUBROUTINE STRENTH(ALPHA,VN,WINV,N,VO,BETA,Q)

*
*
*
*
*
*
*
*
=
*
*
*
*
*
*
*
*
*

[
(o R T T L e s L L A LT ]
C
c SUBROUTINE STRETE COMPUTES THE PANEL SOURCE STRENGTHS.
C
C  #»++ LATEST REVISION - 28 JAN 1987 s»=
C
C  #*++ PARAMETER DESCRIPTICHN #»#»
C
C INPUT:
C ALPHA - VECTOR CONTAINING THE SURFACE SLOPE FOR EACH PAKEL
cC V¥ - VECTOR CONTAINING THE TRANSPIRATION VELOCITY FOR EACH PANEL
C VWIBV - INVERSE OF THE AERODYNAMIC INFLUENCE COEFFICIENTS
c ¥ - NUMBER OF PANELS
c Vo - FREE STREAM VELOCITY
C BETA =~ ANGLE OF ATTACK
C
C OUTPUT:
c Q - VECTOR CONTAINIEG THE SOURCE STRERGTHS
C
T e Y YT Ty Y
c
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION ALPHACN) ,VE(EN) ,WIEV(E,D),Q(N)
C
DO I=1,¥
SUM=0.0DO
DO J=1,¥
SUM=SUM+WINV(I,J)*(VO+*DSIR(ALPEA(J)~-BETA)~VE(]))
END DO
Q(I)=sUM
END DO
C
RETURKE

END
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[

~1

B.3.4 Mathematics library MATHLIB

SUBROUTINE INTRP(X,XVEC,YVEC,¥,SPLY¥,¥S,Y,DYDX,D2YDX2,IER)

[

o T P LTy r Ty rprees
Cc *
[ THIS SUBROUTINE USES CUBIC SPLINE FIT PARAMETERS PRODUCED BY IMSL *

C ROUTINE ICSCCU TO FIND INTERPOLATED VALUES OF A FUNCTION AND ITS DERIVATIVES*
AT ANY STATIOFN X.

Q

#+» PARAMETER DESCRIPTION ##»

INPUT:
- INDEPENDENT COORDINATE. X MUST BE WITHIN THE RAXGE OF WHICH WAS
SERT TO SUBROUTINE SPLINE.

XVEC - VECTOR OF LENGTH N CONTAINING THE X COORDINATES.

YVEC - VECTOR OF LENGTH N CONTAINING THE VALUE OF Y AT X STATIORS
CORRESPOEDING TO THOSE IN XVEC.

. § - NUMBER OF DATA POINTS USED 1IN THE SPLINE FIT (DIMENSION OF VECTORS
XVEC AND YVEC)

SPLY - VECTOR OF SPLINE FIT PARAMETERS AS OBTAINED FROM A CALL TO SYSTEM
ROUTIRE ICSCCU.

| - ROW DIMENSIOR OF SPLE EXACTLY AS SPECIFIED IN THE DIMERSION
STATEMERT OF THE CALLING ROUTINE

o]

OUTPUTS
Y -~ INTERPOLATED VALUE OF THE FUNCTION AT TEE STATION X
DYDX - INTERPOLATED VALUE OF THE FIRST DERIVATIVE OF THE FUNCTION AT THE
STATIOR X

D2YDX2 INTERPOLATED VALUE OF THE SECOND DERIVATIVE AT THE STATION X
IER - ERROR PARAMETER. O FOR SUCCESSFUL INTERPOLATION
1 FOR X OUT OF BOUEDS

L JEE IR K 2K B B R JEE JEE JER K R JEE SR JEE JEK JEE BN S 2R JEE 2R R IR

EXRXEERERBX AR R SR EBE RS RS S XS RA B AR AR R R ESBA R BRRE R RR RSN R AR RN B RR R R AR R AR SRR RN RS S

aoaoaaogaoaaoaoagaoaoo0oao0a0o0o000000a0Q000

IMPLICIT REAL*8(4-8,0-Z)
DIMENSION XVEC(E),YVEC(N),SPLE(NS,3)

[
[ *#s+ VERIFY THAT X IS WITHIN THE PROPER RANGE =»»
C **¢ EPS IS USED AS A TOLERANCE FOR ROUED-OFF ERROR ##»
[
EPS=1.0D-6
IF((XVEC(1)-X) .GT.EPS.OR. (X-XVEC(N)) .GT.EPS) THEX
IER=1
RETURN
END IF
[
C *«++ SEARCH THROUGH THE ABSCISSA VECTOR TO LOCATE THE INTERVAL IN s»=»
Cc »»+ WHICH X LIES. xn
[
FF=E~1
DO 10 J=1,8F

IF(J.EQ.¥F) GOTO 20
IF((XVEC(J)-EPS) .LE.X.AND.X.LT.XVEC(J+1)) GOTO 20
10 CONTINUVE

C
C #%+ COMPUTE INTERPOLATED VALUES #e*=»
20 D=X-IVEC(J)

Y=SPLE(J,3)#D**3+SPLE(J,2) +D*+2+SPLE(J,1)*D+YVEC(J)
DYDX=3.0DO*SPLY(J,3)*Ds#2+2.0DO*SPLE(J,2)*D+SPLN(J,1)
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D2YDX2=6.0DO+SPLN(J,3)*D+2.0DO*SPLE(],2)
IER=0

RETURE
END
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SUBROUTINE LINTRP(X,XP,YP,SPLN,N,Y,DYDX,IER)
[
o T T T T e T T T

*

SUBROUTINE LINTRP WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUTICS *
AND ACOUSTICS AT STANFORD UNIVERSITY BY THOMAS LUED. LATEST REVISION 17 *
JULY 1984. .

THIS SUBROUTINE USES SLOPES GENERATED BY SUBROUTINE LNSPLE TO FIND
INTERPOLATED VALUES OF A FUNCTION AND ITS DERIVATIVE AT ANY STATION X.

**PARAMETER DESCRIPTION#*»

IEPUTS:

INDEPENDENT COORDINATE. X MUST BE WITHIN THE RANGE OF WHICB WAS
SENT TO SUBROUTIEE LESPLN.

VECTOR OF LENGTH ¥ CONTAINING THE X COORDINATES OF A FUNCTIORN P.
VECTOR OF LENGTH N COBTAINING THE VALUE OF P AT X STATIOBS
CORRESPONDING TO THOSE IN XP.

SPLN- VECTOR OF SLOPES AS OBTAINED FROM A CALL TO SUBROUTINE LESPLE.

-«
™

*

L 3

.

*

*

.

X -
*

*

-

.

*

X - NUMBER OF DATA POINTS USED IN THE SPLINE FIT (DIMENSION OF VECTORS XP »
E

-

*

.

.

*

-

-

®

*

*

*

*

.

Xp
YP

AND YP)

OUTPUTS :
Y - INTERPOLATED VALUE OF THE FUNCTION AT THE STATION X
DYDX - INTERPOLATED VALUE OF THE FIRST DERIVATIVE OF TBE FUNCTION AT THE
STATION X
IER - ERROR PARAMETER, OF SUCCESSFUL TERMINATION IER IS SET TO ZERO, IER=1
INDICATES THAT X WAS OUT OF BOUNDS OF THE
SPLINE FIT SLOPES.

*+PRECISION#* - ALL PARAMETERS AND INTERNAL VARIABLES ARE DOUBLE PRECISIOE

et R R B R e e e B e e e e e e e e e s e e e e s s e e M o BN e BN N o}

[ T T e T P T Y P e Ty
C

IMPLICIT REAL+*8(A-H,0-Z)

DIMENSION XP(N),YP(N),SPLE(N-1)

C
IER=0
BF=N-1
C
c s*+ VERIFY THAT X IS WITHIN TEE PROPER RANGE ###»
c ex+ EPS IS USED AS A TOLERANCE FOR ROUND-OFF ERROR ##=
C
EPS=1.0D-6
IF((XP(1)-X) .GT.EPS.OR. (X-XP(N)) .GT.EPS) THEN
IER=1
RETURN
END IF
[
[+ #s+ SEARCH TBROUGH THE ABSCISSA VECTOR T0 LOCATE THE INTERVAL IN #*#»
C *s¢ WHICH X LIES. s»#
[

DO 10 J=1,§F
IF(J.EQ.XF) GOTO 20
IF(X.GE.(XP(J)-EPS).AND.X.LT.XP(J+1)) GOTO 20
10 CONTINUE

a

(o} s+¢ COMPUTE INTERPOLATED VALUES *##
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D=X-XP(J)
Y=SPLE(J)*D+YP(J)
DYDX=SPLE(J)

RETURN
EED
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SUBROUTINE LESPLN(X,Y,N,SLOPE,IER)
o T L P P PP T e
*
THIS SUBROUTINE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUT- =
ICS AND ACOUSTICS, STANFORD UNIVERSITY BY THOMAS LUED. LATEST REVIS-»
ION 13 SEPTEMBER 1984. *
L
SUBROUTINE LESPLE (LINEAR SPLINE FIT) IS USED T0 GENERATE THE *
SLOPE OF A DISCRETE FUECTION TEROUGH THE USE OF LINEAR SEGMENTS. THE
SLOPE AT THE MIDPOINT OF EACH IRTERVAL IS COMPUTED USING FIRST
ORDER ACCURATE BACKWARD DIFFERENCING. SUBROUTINE LINTRP IS CALLED
TO DO THE ACTUAL INTERPOLATING.

L ]

#*PARAMETER DESCRIPTION#=

* 4 B "N

INPUT:

I - VECTOR OF LENGTH § CONTAINING THE ABSCISSAS. THE ELEMENTS OF+*
X MUST BE ORDERED SUCH THAT X(I+1)>X(I).

Y - VECTOR OF LENGTH N CONTAINIEG THE ORDINATES.

B - LENGTH OF THE INPUT VECTORS. ¥ MUST BE GREATER THAN OBE.

OUTPUT:
SLOPE - VECTOR OF LENGTH N-1 CONTAINING THE SLOPE OF EACH IBTERVAL
IER - ERROR PARAMETER. ON BORMAL EXIT IER IS SET TO ZERO. IER=1
INDICATES THAT N WAS LESS THAN 2. TIER=2 INDICATES THAT
X(I+1)<=X(I).

«+«LINEKING** - NO EXTERNAL SUBROUTINES TGO LIENK.

*«*PRECISION#+ - ALL PARAMETERS AND INTERNAL VARIABLES ARE DOUBLE
PRECISION.

o000 000000000000000a0aa00a00a0aa0

L IR 2NN I I B BEE JEE JEE NEE BNE NN JNE DR N

CHERRRRAELRRREERERLRSEA AR R SRS ERNSERREAL AR A RSB REERESRR RSB AR E SRR RR KK
IMPLICIT REAL+*8(A-H,0-2)
DIMENSION X(N),Y(N),SLOPE(N-1)
ar=a i
CHECK FOR ERROR CONDITIONS
IER=0
IF(N.LT.2) THEN
IER=1
GOTO 200
END IF
DO 10 I=1,HF
IF(X(I+1).LE.X(I)) TEER

[¢]

IER=2
GOTO 200
END IF
10 CONTINUE
C COMPUTE FIRST ORDER ACCURATE SLOPES

DO 20 I=1,§F
SLOPECI) =(Y(I+1)-Y(1))/(X(I+1)-X(I))
20  CONTINUE
200  RETURE
END




g
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SUBROUTINE RK2(N,FCK,X,Y,XENED)
CHESEARBEENAERBERAEE SRS IRRARERRRRERERIRA BN RRERB RS R R R RS RR RS E RN N R
[

C  THIS ROUTINE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AEROKAUTICS

C AND ACOUSTICS, STANFORD UNIVERSITY BY THOMAS LUND. LATEST REVISION
C 20 JAN 1985.

[

C  SUBROUTINE RK2 INTEGRATES A FIRST ORDER SYSTEM OF ORDINARY DIFFER-
C ENTIAL EQUATIONS USING A SECOND ORDER ACCURATE RUNGE-KUTTA SCHEME.
EACH CALL TO RK2 ADVANCES THE SOLUTION FORWARD IN TIME ONE INTERVAL.

[¢]

#**PARAMETER DESCRIPTION*»%*

N - RANK OF THE FIRST ORDER SYSTEM.

FCN - N-DIMENSIONAL FUNCTION WHBICH DEFINES THE SYSTEM DERIVATIVE.

X - IRDEPENDENT VARIABLE, INITIAL VALUE FOR INTEGRATION STEP.

Y -~ VECTOR OF LERGTH N WHICH ON INPUT CONTAINS THE IBITIAL VALUES

AND OF QUTPUT CONTAINS THE APPROXIMATE SOLUTION ADVANCED IN
TIME ONE INTERVAL.

XEED - VALUE OF THE INDEPENDENT VARIABLE AT THE END OF THE INTERVAL.
THE INTERVAL SIZE IS DEFINED AS XEND-X.

*+s TNKING#**

B0 LINKING TO EXTERNAL ROUTINES IS MECESSARY, BUT A DRIVIEG
ROUTINE IS NEEDED TO CALL RK2, AED A SUBROUTIEE MUST BE AVAILABLE TO
COMPUTE TBE SYSTEM DERIVATIVE.

**>xPRECISION*ss
ALL PARAMETERS AND VARIABLES ARE DEFINED AS DOUBLE PRECISION
**+«ENVIRONMENTo*»

VAX 11-780

L 2R JER JEE R BN IR K JEE JEE JNE JEE SR R 2R K JEE JEE JEE JEK JEY JEE JEF BEE JEE R K 2B JEE JEE JEE JEE JEE R 3

o000 0O0caoOa0a0000an

[ T P TP TP s
IMPLICIT REAL*8(A-H,0-Z)
DIMERSION Y(¥),YP(10),YHAT(10),YHATP(10)
H=XEND~-X
CALL FCK(Y,X,Y,YP)
DO 10 I=1,¥
YHAT(I)=Y(I)+H*YP(I)
10 CONTINUE
CALL FCN(N,XEBND,YHAT,YHATP)
DO 20 I=1,N
Y(I)=0.5D0+(Y(I)+YBAT(I)+H+YHATP(I))
20 CONTINUE
X=XEND
RETURY
END
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SUBROUTINE SIMQ(AD,A,B,¥,HD,KS)

c
o 2 T T L L L T T T T P T TR PP
C *
[ SUBROUTINE SIMQ IS AN OLD IBM SYSTEM USED TO SOLVE A SYSTEM OF *
C SIMULTANEOUS LINEAR EQUATIONS. THE ALGORITHM IS GAUSSIAN ELIMINATION. -
[ =
C ==+ PARAMETER DESCRIPTION s#*s *
C *
C IRPUT: *
C AD - MATRIX OF COUPLING COEFFICIENTS -
C A - WORK SPACE MATRIX OF DIMENSION IDENTICAL TO THAT OF AD *
C B - RIGHT HAND SIDE VECTOR *
C T - RANK OF THE SYSTEM *
C ¥D - NUMBER OF EQUATIONS IN THE SYSTEM (USUALLY EQUAL TO ¥) *
C KS - ERROR PARAMETER, KS=1 FOR A SINGULAR MATRIX »
[ -
o T T T T T
(o}
IMPLICIT REAL+*8(A-H,0-2)
DIMENSION B(HED),AD(ED,HD),A(1)
I1J=0
DO 130 K=1,X ARRAY
DO 130 L=1,% ARRAY
IJ = 1J#1 ARRAY
130 A(IJ) = AD(L,K) ARRAY
132 TOL=0.0 SIMQ 540
KS=0 SIMQ 550
JJ=-X SIMQ S60
DO 65 J=1,X SIMQ 570
JY=J+1 SIMQ 580
JI=]I+N+1 SIMQ 590
BIGA=0 SIMQ 600
I1T=3]-] SIMQ 610
DO 30 I=J],% SIMQ 620
IJ=1T+1 SIMQ 660
IF(DABS(BIGA)-DABS(A(1J))) 20,30,30 STMN A70
20 BIGA=A(IJ) STMQ 680
IMAX=Y SIMQ 690
30 CONTINUE SIMQ 700
IF(DABS(BIGA)-TOL) 35,35,40 SIMQ 740
35 KS=1 SIMQ 750
GO TO 220 SIMQ 751
40 I1=J+E+(J-2) SIMQ 800
IT=IMAX-] SIMQ 810
DO 50 K=J,X SIMQ 820
I1=T1+N SIMQ 830
I2=T1+IT SIMQ 840
SAVE=A(I1) SIMQ 850
A(I1)=4(12) SIMQ 860
A(I2)=SAVE SIMQ 870
50 A(I1)=4(11)/BIGA SIMQ 910
SAVE=B(IMAX) SIMQ 920
B(IMAX)=B(J) SIMQ 930
B(J)=SAVE/BIGA S5IMQ %40
IF(J-X) 55,70,56 SIMQ 980
S5 IQS=N*(J-1) SIMQ 990
D0 65 IX=JY,§ SIMQ1000
IXJ=IQS+IX SIMQ1010
IT=J-IX SIMG1020

DO 60 JX=J]Y,X SIMQ1030
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IXIX=H+(JX-1)+IX SINQ1040
JIX=IXJX+IT SIMQ1050

60 ACIXJX)=ACIXIX)-(ACIXI)*+A(IIX)) 'SIMG1060
65 B(IX)=B(IX)-(B(J)*+A(IXJ)) SIMQ1070
70 BY=N-1 SIMQ1110
IT=Ns) SINQ1120
DO 80 J=1,NY SIMG1130
IA=IT-] SIMQ1140
1B=N-J SINQ1150
1c=K SIMQ1160
DO 80 K=1,J] SIMQ1170
B(IB)=B(IB)~A(I4)*B(IC) SIMQ1180
IA=TA-¥ SIMQ1190
80 IC=IC-1 SIMQ1200

220 IF (N.EQ.ND) RETURN ARRAY
1] = BsN+t ARRAY
DO 110 L=1,¥ ARRAY
DO 110 K=1,¥ ARRAY
I3 = 1141 ARRAY

110 AD(N-L+1,E-K+1) = A(IJ) ARRAY
RETURN SIMQ1210

END

SIMQ1220




B.3. SUBROUTINE LIBRARIES

[V
ot

FUNCTION SIMS(F,ZL,ZU,NINT)
[ T T T R P T T L L

THIS ROUTINE WAS WRITTEN FOR THE JOINT INSTITUTE FOR AERONAUTICS
AND ACOQUSTICS, STANFORD UNIVERSITY BY THOMAS LUKD. LATEST REVISION
18 JULY 1986.

SUBROUTINE SIMS PERFORMS A NUMERICAL INTEGRATIOE OF A4 ONE DI-
MENSIONAL FUNCTION USIKG A FOURTH ORDER ACCURATE SCHEME.

#»PARAMETER DESCRIPTION*#

INPUTS:

F - A FUNCTION WHICH DEFINES THE EQUATION TO BE INTEGRATED.
THE CALL MUST BE OF THE FORM CALL F(Z) WHERE Z IS
VARIABLE OF INTEGRATION. F MUST BE DECLARED EXTERNAL IN
THE DRIVIEG ROUTIRE

ZU - UPPER LIMIT OF INTEGRATION.

ZL - LOWER LIMIT OF INTEGRATION.

NINT - NUMBER OF INTEGRATION SUBINTERVALS. NINT MUST BE AN EVER
NUMBER.

+»LINKING** - KO LINKING TO LIBRARIES EEEDED, HOWEVER A DRIVING
ROUTINE AS WELL AS A FUNCTION EVALUATING ROUTIBE
NEED TO BE SUPPLIED.

«*PRECISION** - ALL PARAMETERS AND INTERNAL VARIABLES ARE DOUBLE
PRECISION.

R OE R R R ERRERERRRERERREERERREERN

SRR AR AL AR REARESB RIS AR RRR RN AR AR R REERESREERD AR X RA RN E XA DR SRR DR SR

a0 O0O0000000aaan0

IMPLICIT REAL#*8(A-H,0-Z)

c
c »s% COMPUTE SUB-INTERVAL SIZE #%+
c
DZ=(ZU-ZL)/DFLOAT (NINT)
c
c s#s INITIALIZE INTEGRATION PARAMETER #s#+
c
SUM=0.0DO
Z=7L
c
c »ss CARRY DUT INTEGRATION USING 4TH ORDER SIMPSONS RULE #+s
c
DO 10, I=0,NINT
c
c s++ SET WEIGHETING FACTOR TO A NOMINAL VALUE OF 2 se=
c
R=2.0D0
c
c »++ IF I IS ODD SET THE WEIGHTING FACTOR TO 4 ==
c
IF((DFLOAT(I)/2.0D0O-DFLOAT(I/2)) .GT.0.2D0) R=4.0DO
c
c s+* AT THE ENDPOINTS SET THE WEIGHTING FACTOR TO 1 #s=
c
IF(I.EQ.0.0R.I.EQ.NINT) R=1.0DO
c
c +++ FIND CONTRIBUTICN TO THE INTEGRAL s#»
c

SUM=SUM+R*F(2)
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10 COBTIBUE
C
c **+ RETURN THE APPROXIMATED INTEGRAL ##»
C

SIMS=SUM*DZ/3.0DO

RETURK
END
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